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Weather vulnerability is often assessed using historical data, 
but this can be very misleading in a world of changing climate. 
Weather refers to short-term atmospheric conditions, while 
climate is the weather averaged over a long period. With 
climate change, some places are becoming wetter, some 
drier, and extreme weather events, such as heatwaves, 
floods, droughts, and tropical cyclones, are becoming 
more likely. Hence, the nature of weather risks will vary 
considerably. Despite the magnitude of this shift, there is 
currently no widely accepted method for bringing climate 
change into catastrophe risk modeling.

The objective of this note is to review, compare, and 
contrast the different techniques used in this literature to 
include climate change into vulnerability analysis. To do 
so, it summarizes recent research papers exploring how 
to bring climate change into catastrophe risk modeling. 
The note builds on this review to propose and explain a 
robust methodology and highlight its potential caveats. As 
such, this note is a first step towards unifying approaches 
and disseminating the analysis of climate change in 
vulnerability analysis. The method proposed in this note can 
be applied by researchers, economists, and public policy 
practitioners to study a wide range of topics, from the impact 
of climate change on diseases to stress-testing social                                                                      
protection programs.
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Overview of the Standard 
Methodology Assessing 
Weather Impacts

>>>

Estimating vulnerability to weather is critical to identify, ex-ante, the people who will likely need 
assistance in the aftermath of adverse weather or weather shocks. Policymakers can use this 
information to target horizontal expansions of social protection programs. The World Bank’s 
Stress Test Tool (2021) provides a framework to assess the adaptiveness of social protection 
systems, in other words, their ability to respond to shocks, including extreme weather events. The 
first step is to evaluate the need by estimating how many people would suffer or fall into poverty 
in the aftermath of adverse weather. To do so, welfare is often proxied by consumption per 
capita, and we focus on this relationship in the rest of the document. However, the methodology 
described in this note can be applied to other dimensions of welfare, such as food insecurity 
(Blanchard et al., 2023) or health outcomes (Aguilar-Gomez et al., n.d.). 

This note complements the standard methodology of vulnerability study by considering long-
term changes in weather, i.e., climate change, to estimate long-term changes in needs. Although 
the World Bank work has mainly focused on analyzing the welfare impact of extreme weather 
events, particularly floods and droughts, this note considers a broader notion of weather for 
completeness and in agreement with the literature. In what follows, weather refers to all short-
term variations1 in atmospheric conditions, which encompassing both minor deviations to 
the historical mean and large ones-extreme weather events-. Atmospheric conditions can be 
measured by different weather indicators, such as monthly temperature, daily precipitation, and 
drought indexes. 



The World Bank (2021)’s tool for stress testing social protection 
mentions three methods to assess needs in the aftermath of 
weather shocks: a scenario approach, a multilevel approach 
(Gao et al., 2020; Günther and Harttgen, 2009), and a 
simulation approach (Baquie and Fuje, 2020; Hill and Porter, 
2017). The scenario approach focuses on analyzing selected 
shocks of a given magnitude, and the multilevel approach 
requires strong assumptions on the welfare distribution. In this 
note, we focus on the third method based on simulations, which 
avoids very strong assumptions regarding the distribution of 
weather shocks and welfare and is widely used in the recent 
literature. As explained earlier, we also broaden this method to 
study weather, beyond extreme weather events. The current 
methodology has two steps:

1.	 Estimating the impact of weather on welfare.

2.	 Simulating the welfare distributions resulting from 
the observed historical distribution of weather.

The first step relies on quantifying the relationship between 
welfare and weather. Most often, welfare is proxied by 
household consumption, and we focus on this relationship 
in what follows. Household consumption is often taken from 
household surveys and weather from reanalyzed data based 
on remote sensing imagery and weather stations. Matching 
one to the other requires having some spatial information in the 
household surveys, such as the household’s GPS coordinates 
or district name. Then, one can regress log consumption on 
weather and use a specification similar to the one in (Hill and 
Porter, 2017):

ln(Chkt) = βXhkt + δWkt + γWkt × X'hkt + αh + ηt + εhkt (1)

Where Chkt is household h’s consumption when living in 
district k at time t, Xhkt are household characteristics, and αh 
and ηt are household and time fixed effects. Wkt is a vector 
of weather variables, that could potentially be complemented 
with variables describing idiosyncratic shocks at the household 
level. In this regression, δ and γ are the parameters of interest 
that quantify the impact of weather on household consumption. 
Results from this regression quantify the relationship between 
weather and consumption for the years included in the 
dataset, i.e., past years for which we have both weather and 
consumption data. Often, researchers do not have panel data 
because households are not interviewed over many years 
in nationally representative household surveys. In that case, 
researchers can use synthetic panel data. They would replace 
αh by fixed effects at a more aggregated level, such as district 
fixed effects (αk). Measurement error could be higher in this 
specification and bias the coefficient towards zero. 

This methodology can also be applied to other dimensions of 
welfare, such as food consumption (Blanchard et al., 2023) 
or health outcomes (Aguilar-Gomez et al., n.d.). In this case, 
the variable on the left-hand side would not be consumption 
but a measure of the considered outcome. The more frequent 
and disaggregated the welfare data is, the more powered 
the regression is, and the more accurate the estimates. The 
choice of the weather variable(s) is also crucial in assessing 
the impact of weather on the outcome of interest. For instance, 
one may expect drought to impact crop yields significantly but 
to have a minor effect on infrastructure losses. Conducting 
a literature review is an essential first step toward selecting 
a set of weather variables that will likely be relevant to the 
considered outcome. As explained in Section 2.a, considering 
non-linearity in this specification is also central because the 
literature shows that weather usually has a non-linear effect 
on most outcome variables.

The second step simulates the distribution of consumption 
given the observed historical distribution of weather. It uses 
the estimated coefficients to calculate the households’ 
consumption distribution in states of the world with alternative 
weather. Doing so allows us to quantify the distribution of 
consumption, including in years for which there is no measure 
of consumption. This step often relies on bootstrapping by 
drawing states of the world from the historical distribution of 
weather. In this case, the estimated consumption distribution 
mainly represents the impact of past weather, which may not 
describe future weather very well. Indeed, climate models 
show that the mean and variance of weather indicators are 
expected to shift (IPCC, 2022).

In what follows, we review the literature and explain the options 
to include climate change in the computation of future welfare 
distributions. We mention and discuss a few suggestions to 
tailor Step 1’s specification to capture the impact of climate 
change on welfare. However, given the inherent tradeoff 
between identification and estimating long-term changes, we 
suggest mainly focusing on adopting a rigorous approach to 
the regression specification in Step 1 to capture the historical 
relationship as accurately as possible. We present some of the 
potential caveats in doing so in what follows. Then, we explain 
how to adapt the bootstrap approach in Step 2 to include 
climate projections and their uncertainty in the simulation of 
consumption distributions. In the conclusion, we explain the 
potential limitations of the suggested methodology. Table 1 
summarizes the recommendations proposed in this note 
and refers to their related sections.



Associated sectionRecommendation

Step 1: Impact of weather on welfare

Step 2: Predicting the impact of future weather by simulating consumption distributions resulting from the 
forecasted distribution of weather

•	 Prioritize the fixed effect specification as it captures causal effects and is easy to implement. Section 1

•	 Be extremely clear on the assumption one makes regarding uncertainty, particularly when 
considering model and regression uncertainty.

Section 3a

•	 Avoid using the cross-sectional specification given the threat to the exogeneity restriction. Section 1

•	 Consider the heterogeneity of weather impact on welfare outcomes and delays                             
and displacement.

Section 2d and 2e

•	 If possible, use the projection of all models in the ensemble to quantify model uncertainty, 
even though this process may be more computationally intensive.

Section 3a

•	 Use the most widely used approach in the Economics literature for projections. It derives 
the predicted changes between future years and a historical baseline for each GCM grid 
cell before adding it to the observed weather data in the historical baseline.

Section 3c1

•	 The weather variable selected in Step 1 should be the same as one predicted by the 
GCMs, or there needs to be a physics formula to calculate this variable from the set of 
variables available in the GCM data.

Section 3c2

•	 Use the projections of the CMIP6 GCMs for their comparability. Section 3b

•	 Keep in mind the subtlety of the difference between weather and climate and, if possible, 
test their results' robustness by implementing the long-differences specification and/or 
filtering weather and outcome data to isolate low frequencies. 

Section 1

•	 Iterate on the choice of the specification and independent variables to capture non-linearity 
in weather extremes and improve the goodness of fit as much as possible. The quality of 
the results heavily depends on it.

Section 2a

•	 Check the robustness of the results by comparing different weather data sources. In any 
case, it is crucial to accurately document the data sources and the construction of the 
weather variable. 

Section 2b

•	 Although there is no perfect specification to separate the direct effect of weather shocks 
from adaptation consequences, we suggest carrying robustness checks to shed light on 
this crucial distinction. Depending on data availability and the study’s objective, the options 
range from evaluating the impact of weather on variables measuring adaptation, including 
interactions with variables reflecting adaptation mechanisms, or controlling for proxies          
of adaptation. 

Section 2c

>  >  >
T A B L E  1  - Summary of the Main Recommendations



This note relies on the below definitions provided by the Intergovernmental Panel on Climate 
Change (IPCC, 2022) and Dell et al. (2014), except for the definition of vulnerability.

Adaptation: The process of adjustment to actual or expected climate and its effects, in order to 
moderate harm or exploit beneficial opportunities (IPCC, 2022) 

Climate: Climate is usually defined as the average weather, or more rigorously, as the statistical 
description in terms of the mean and variability of relevant quantities over a period ranging from 
months to thousands or millions of years. The classical period for averaging these variables is 
30 years, as defined by the World Meteorological Organization. The relevant quantities are most 
often surface variables such as temperature, precipitation, and wind (IPCC, 2022).

Climate model: A numerical representation of the climate system based on the physical, 
chemical and biological properties of its components, their interactions and feedback processes, 
and accounting for some of its known properties (IPCC, 2022). 

Climate projection: A climate projection is the simulated response of the climate system to 
a scenario of future emission or concentration of greenhouse gases (GHGs) and aerosols, 
generally derived using climate models (IPCC, 2022). 

Exposure: The presence of people; livelihoods; species or ecosystems; environmental functions, 
services, and resources; infrastructure; or economic, social, or cultural assets in places and 
settings that could be adversely affected (IPCC, 2022). 

Extreme weather event: An extreme weather event is an event that is rare at a particular place 
and time of year. Definitions of rare vary, but an extreme weather event would normally be as 
rare as or rarer than the 10th or 90th percentile of a probability density function estimated from 
observations (IPCC, 2022). 

Hazard: The potential occurrence of a natural or human-induced physical event or trend 
that may cause loss of life, health impacts, damage to property, infrastructure, livelihoods, 
service provision, and environmental resources (IPCC, 2022). This note focuses on weather-                   
related hazards.

Glossary
>>>



Risk: The potential for adverse consequences of a hazard on lives, livelihoods, health and 
well-being, ecosystems and species, economic, social and cultural assets, services, and 
infrastructure. Risk results from the interaction of vulnerability (of the affected system), its 
exposure over time (to the hazard), as well as the (weather-related) hazard and the likelihood 
of its occurrence (IPCC, 2022). This note focuses on the potential impact of hazards on welfare

Vulnerability: In this note, we use vulnerability and risk interchangeably, following a common 
abuse of terminology in the associated Economic literature. The exact definition of vulnerability 
is narrower and refers to the propensity or predisposition to be adversely affected, which 
encompasses sensitivity or susceptibility to harm and lack of capacity to cope and adapt (IPCC, 
2022). In this note, we refer to the narrow definition of vulnerability as adaptive capacity. 

Weather: The word climate is reserved for the distribution of outcomes, which may be 
summarized by averages over several decades, while weather describes a particular realization 
from that distribution and can provide substantial variability (Dell et al., 2014). 
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1.
Before considering some options to include climate change in Step 1’s specification, let us 
explain the essential difference between weather and climate. These two concepts differ in 
the frequency of the observed changes. USGS defines it as follows: “Weather refers to short-
term atmospheric conditions while climate is the weather of a specific region averaged over a 
long period of time. Climate change refers to long-term changes” (USGS, 2022). Based on this 
definition, monthly temperature or average temperature over a crop growing season describe 
weather patterns. Extreme weather events are also weather patterns since they are short-term 
changes in atmospheric conditions. Although the World Bank’s work often focuses on extreme 
weather events, the literature has also applied this methodology to common weather conditions, 
such as the ones measured by average monthly temperature or precipitation. This note refers to 
both rare and common weather patterns under the term “weather”.

1BACKGROUND NOTE ON BRINGING CLIMATE CHANGE INTO VULNERABILITY ANALYSIS <<<

Step 1: Options to Directly 
Include Climate Change in the 
Estimation of the Impact of 
Weather on Welfare

>>>



>  >  >
F I G U R E  1  - Simplified Illustration of the Impact of Climate Change on the Distribution of Temperature and Its 
Consequences for Weather (Average Temperature and Extreme Weather Events)

Probability

TemperatureTaverage Thot

Hot days

Probability

TemperatureTaverage
Thot

Hot days

Climate 
change

The distribution of weather evolves with climate change, 
i.e., long-term changes in atmospheric conditions. Average 
temperatures are likely to increase in many countries due 
to global warming. The frequency and severity of extreme 
weather events are also expected to worsen because of climate 
change. For instance, the number of days with temperature 
exceeding 29°C during maize’s growing season is a crucial 
predictor of yields. This indicator measures short-term (daily) 
changes in weather, but climate models also predict that, in 

many regions, the temperature will exceed the 29°C-degree 
threshold more and more frequently. Figure 1 illustrates the 
expected change in temperature distribution due to climate 
change. Not only does the average temperature increase, 
but the distribution's tails are also expected to be thicker. 
Consequently, the frequency and severity of extremely hot 
days (T>Thot) are expected to increase. With this in mind, we 
clarify what can be estimated in Step 1 and how to do so in 
what follows.

Step 1's specification (1) includes geographical fixed effects 
to control for temporally invariant omitted variables. They are 
often needed to estimate causal effects because one cannot 
control for any possible confounder. However, the statistical 
power in the specification including geographical fixed effects 
comes from weather deviations from the average. As a 
result, this specification estimates the response to short-term 

changes in climate, i.e., weather. This is why this specification 
estimates the impact of weather shocks or extreme weather 
events on consumption. To do so, Wkt is defined to capture 
significant deviations from the historical mean. However, 
this specification does not capture the impact of long-term 
changes in weather and their associated responses in terms 
of investment and adaptation (Kolstad and Moore, 2020). 

a.	 Research Design: The Inherent Tradeoff between Identification          	
	 and Long-Run Changes

2BACKGROUND NOTE ON BRINGING CLIMATE CHANGE INTO VULNERABILITY ANALYSIS <<<



When evaluating the impact of climate change, it is crucial 
to understand how the long-term changes in atmospheric 
conditions have impacted welfare. To consider the long-run 
changes in weather, i.e., the climate component of atmospheric 
patterns, one may be tempted to remove the fixed effects and 
use the following non-identified cross-sectional specification: 

ln(Chkt) = βXhkt + δWkt + γWkt × X'hkt + εhkt (2)

In equation (2), the identification of climate’s impact, δ, no 
longer relies on weather’s deviations from the mean because 
fixed effects are removed. As a result, this specification 
accounts for long-term changes in weather. However, the 
estimate of δ is biased because causality requires that, if two 
households face the same shocks, their expected consumption 
conditional on observables Xhkt is the same. This assumption 
is implausible in specification (2) due to potential confounders. 
In other words, the absence of fixed effects threatens the 
exogeneity restriction needed to recover causality. This is the 
inherent tradeoff between identification and long-run changes 
(Hsiang, 2016). 

A middle ground between the well-identified specification 
(1) assessing weather’s impact and the biased specification 
(2) considering climate change is the long-differences 
specification. It compromises the pros and cons of the cross-
sectional and fixed-effect specifications by differentiating 
the data for two points far apart in time (often two to three 
decades). By doing so, specification (1) becomes: 

∆ ln(Chk) = β∆Xhk + δ∆Wk + γ∆(Wk × X'hk) + Uhk (3)

Where ∆ ln(Chk) = ln(Chk,2050) - ln(Chk,2020) for instance. In 
this specification, the dependent variable no longer captures 
yearly variation in weather, but long-term changes in weather, 
which is more in line with the definition of climate. Moreover, 
the assumption required to recover causality is weakened 
compared to specification (2). Here, causality requires that 
if two households face the same change in weather shocks, 
their expected change in consumption conditional on the 
change in observables ∆Xhk is the same. Nevertheless, 
the exogeneity assumption is stronger than it is in the fixed                                
effect specification. 

Given the pros and cons of all approaches, Hsiang (2016) 
suggests comparing the three estimators to test the results’ 
robustness. Assuming that the identification of the three 
estimates stands (including the one of the cross-sectional 
specification), three equal estimates of δ means that the 

effect of short-term deviations from the mean is similar to that 
of long-term deviations. In other words, weather’s impact is 
equal to climate’s impact. This occurs if there is no adaptation, 
i.e., no belief effect. As a result, the difference in δ estimated 
with (1) and δ estimated with (2) or (3) can be interpreted as 
a measure of adaptation if the estimates of δ are unbiased. 
However, the equality of the estimates can also stem from 
the omitted variable bias compensating the adaptation effect, 
particularly when considering the likely biased specification 
(2). To shed light on this, Hsiang (2016) proposes an additional 
specification explained in the following section. 

b.	 Isolating the Climate Change 		
	 Component of Weather

Hsiang (2016) suggests a methodology expanding the scope 
of the three approaches presented in the previous subsection 
to further shed light on whether climate’s impact equals 
weather’s impact. We present this approach in what follows. 
However, although very promising, this technique is new 
and has not been widely applied in the literature at the time                
of writing. 

As mentioned earlier, the difference between weather and 
climate lies in the periodicity of the observed changes, with 
climate change corresponding to long periods/low frequencies. 
The link between periodicity and frequencies has been studied 
intensively in signal Engineering. A simple mathematical 
transformation, the Fourier transformation, translates temporal 
data into a sum of sinusoids of given frequencies. Applying 
this formula to weather data gives the following:

Where Wkt is the weather data time series, ωk are the 
frequencies, and a   and b   are constants. For instance, a 
drought that occurs precisely every eight years would have 
only one term at a frequency equal to (1/8). More complex 
temporal patterns have more than one frequency. The Fourier 
transformation allows to filter the weather components 
according to their frequency. By doing so, one can isolate 
the high frequencies/rapid changes related to weather 
patterns from the long-term changes/low frequencies related 
to climate. Applying specification (2) to the resulting weather 
components is another way to find a middle ground between 
cross-sectional and fixed effect specifications.

Wkt = a0 + ∑ [a       sin(ωkt) + b       cos(ωkt)] (4)
∞

ω=1
ωk

kk
ωk

k

ωk

k
ωk

k
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>  >  >
F I G U R E  2  - Example of Time Series Filtered at Different Frequencies (A-B and C-D) And Comparison of the 
Different Specifications: Cross-Section, Long-Differences, and Panel Using Filtered Data and Raw Data (E)
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Figure 2 presents the results of this methodology used to 
estimate the impact of degree days above 29°C on crop yields 
(Hsiang, 2016). Panel (A) shows the independent variable, 
degree days above 29°C, and the filtered components of 
this weather data are presented in panel (B). Similarly, corn 
yield time series are presented in panel (C), and the filtered 
components of this output data are in panel (D). One can 
observe how the rapid changes (blue) are separated from the 
long-term changes (red). Then, the author compares all the 
specifications described above in panel (E): panel data applied 
to the raw data [1,2], cross-section [9,10], long-differences [8], 
and panel data with the filtered components [3,4,5,6,7]. He 
finds that the coefficients are not statistically different except 
for the cross-sectional specification. These results suggest 
that the effect of gradual changes may be similar to that of 
more rapid changes in this context. This result holds when 

considering other outcomes. For instance, the long-differences 
specification applied to the impact of climate on growth (Dell 
et al., 2012) and conflict (M. Burke et al., 2015) shows similar 
estimates as fixed-effects specifications. 

Hsiang (2016) proposes a theoretical justification for the 
equality of the various estimates of weather and climate 
impacts. Under certain common conditions2, the total effect of 
climate can be exactly recovered using the coefficient derived 
from weather variation in the panel data specification (1). 
Applying the Envelope Theorem and the Gradient Theorem, he 
shows that the marginal effect of the climate on an optimized 
outcome is the same as the marginal effect of the weather. 
This result relies on the fact that, under certain conditions, the 
marginal effect of adaptation and beliefs for marginal climate 
change is zero on an optimized outcome.

4BACKGROUND NOTE ON BRINGING CLIMATE CHANGE INTO VULNERABILITY ANALYSIS <<<



Raw annual (1950-2014) [1] (Schlenker & Roberts, 2009)

Long difference (1980-2000) [8] (Burke & Emerick, 2012)
Cross-section (1950-2014) [9] (Schlenker, Hanemann, Fisher, 2006)
Cross-section without rainfall (1950-2014) [10]

Raw annual (1962-2002) [2]
2-5 year period [3]
6-9 year period [4]
10-13 year period [5]
14-17 year period [6]
18-33 year period [7]

BK Filtered data (1962-2002)

Source: Hsiang (2016)
Note from Hsiang (2016): (A)-(D) Example outcome and climate time series data from Grand Traverse, Michigan filtered at different frequencies. 
(A) raw annual degree-days data (black) and 30-year long-difference (maroon) following Burke and Emerick (2016). (B) Same data decomposed 
into time series at different frequencies, where a Baxter-King band-pass filter has been applied for different periodicities. Filtering causes a loss 
of data at start and end of time series. (C) same as (A) but for corn yields. (D) Same as (B) but for corn yields. (E) Comparison of estimated 
effect of daily temperature using raw panel data sets, filtered data sets, long-differences, and cross-sectional approaches. Sample and estimation 
indicated by both line and bracketed numbers.

We recommend using the fixed effect specification 
described in Step 1 because it captures causal effects and 
is easy to implement. We also warn against using the cross-
sectional specification given the threat to the exogeneity 
restriction. Finally, we encourage researchers to keep in 
mind the subtlety of the difference between weather and 
climate and test their results' robustness by implementing 
the long-differences specification and/or filtering weather and 

outcome data to isolate low frequencies. Agreement between 
the various estimates can be interpreted as minor adaptation 
to climate change. On the contrary, finding significantly 
different coefficients in well-identified specifications suggests 
a significant role of adaptation in response to climate change. 
We describe methods to investigate adaptation mechanisms 
in section 2c. 

c.	 Takeaway

Change in log annual yields
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E
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2.
As mentioned in the previous section, we recommend using specification (1) in Step 1. When 
doing so, there are several potential caveats to remember to estimate the historical impact of 
weather on welfare accurately. In what follows, we focus on some of them and provide solutions 
to tackle them. 

a.	 Assessing Non Linearities

Assuming that the effect of weather on consumption is linear is a strong assumption, 
and the literature has shown that this relationship is often non-linear. This is intuitive since 
an increase of one degree at a very high temperature is more likely to adversely impact yields, 
health, and consumption than a one-degree increase at a moderate temperature. The same 
reasoning applies to precipitation or wind. With climate change, tail events are expected to be 
more and more likely. As a result, estimating the non-linearity of the impact of weather on 
welfare is essential to use the relationship estimated in specification (1) to forecast the 
potential impacts of climate change in Step 2. Therefore, even when an analysis focuses on 
common weather patterns and not extreme events, it should describe these tail situations well 
enough to be relevant in the context of climate change. Similarly, studies on extreme weather 
events should not only capture mild disasters but also some with a severe magnitude to be 
useful in the context of climate change. This is often a challenge since Step 1’s estimation 
needs to be well specified to capture the tails, for which we have less data, relatively well. 

Accurately Estimating the 
Historical Impact of Weather on 
Welfare in Step 1

>>>
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A non-linear relation should be captured by changing the 
functional form of weather to a nonlinear one (bins, splines, 
polynomials, or piecewise linear and stepwise functions). The 
first step is to regress consumption on bins of weather since 
it allows to be relatively agnostic on the form. Alternatively, 
weather indicators themselves can be transformed to capture 
non-linearities while maintaining the linearity in the regression 
equation. For example, while rainfall may improve welfare, 
excess rain can cause severe economic damage at an 
exponential rate. In this case, an appropriate indicator could 
include variables counting the number of days experiencing 
excess rainfall (Baquie and Fuje, 2020). Another classic 
example of such an indicator is the number of degree days 
above 29°C when studying crop yields (Schlenker and Roberts, 
2009). Plotting the relationship between the selected climate 
variable and consumption is also helpful to visually investigate 
the relationship's shape. Stata users can easily create binned 
scatterplots to do so (with the binscatter2 command, for 
instance). Nonlinearities can further be detected by plotting 
the association between the fitted values of the considered 
regression and its residuals. If the fit is good, residuals should 
not systematically depart from zero. 

We encourage researchers to iterate on the choice of the 
specification and independent variables to capture non-
linearity in weather extremes and improve the goodness 
of fit as much as possible. The quality of the results 
heavily depends on it.

b.	 Evaluating the Source of 			 
	 Weather Data

Second, researchers should carefully consider the weather 
data source since it may influence results due to measurement 
error. We explain why in what follows. 

Gridded weather datasets are the most widely used data 
source in the literature. These datasets often combine various 
data inputs, such as weather stations and remote sensing 
imagery, to estimate weather in all grid cells. Estimations rely 
on two types of methods: 

•	 Grid interpolation is a method dealing with the problem 
of missing time or station data by interpolating. The 
precision increases with the frequency of data points and 
the number of nearby weather stations. 

•	 Data assimilation is an alternative method that combines 
observational data with a physics-based model to produce 
“reanalyses.” The model uses physical laws to fill in 
missing values.

Grid interpolation and data assimilation are powerful tools 
for dealing with missing data. As the sparsity of the data at 
hand increases, data assimilation should be favored as long-
distance interpolation might miss the underlying physical laws. 
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To illustrate this point, Auffhammer et al. (2013) compare 
three traditional weather datasets: the CRU and UDEL 
datasets, relying on statistical interpolation, and the NCEP/
NCAR reanalyzes. The authors show that although averaged 
weather indicators measures are all significantly correlated 
(>0.99 for temperature), one should be careful when studying 
deviations from the mean because the correlation across the 
datasets drops when considering deviations. When focusing 
on precipitation, Auffhammer et al. (2013) find a correlation 
of 0.70 between the grids using statistical interpolation and 
approximately 0.30 when comparing them to the reanalysis 
grid. Therefore, we should be careful about the data source 
when applying specification (1) because the inclusion of 
fixed effects may amplify measurement error and, in turn, 
attenuation bias. 

If possible, we advise checking for the robustness of the 
results by comparing different weather data sources. In 
any case, it is crucial to accurately document the data 
sources and the construction of the weather variable. 

c.	 Carefully Considering 			 
	 Adaptation in the
	 Regression Specification

Researchers may want to carefully consider how 
adaptation enters the regression in Step 1. Indeed, Step 1 
estimates the overall impact of weather on consumption, which 
includes the direct adverse impact of weather on consumption 
but also its mitigation through adaptation. For instance, farmers 
may diversify their crops in a bad weather year, protecting 
them from the adverse impact. Understanding the extent to 
which the estimate of δ reflects adaptation is crucial for policy 
implications. Indeed, it allows us to understand whether pre-
existing safety nets and behaviors help mitigate the impact of 
the shock or not. As mentioned in Section 1b, accounting for 
adaptation is particularly important when the estimates from 
the panel and long-differences specifications differ. 

The literature has attempted to disentangle the two effects 
with various approaches. A first method directly evaluates 
the impact of weather on outcomes known to be 
adaptation actions. For instance, Hornbeck (2009) study the 
effect of drought on the migration of agricultural households. 
In turn, one could estimate the impact of push migration on 
consumption to evaluate the increase in welfare attributable 

to this adaptation strategy3. Alternatively, researchers can 
include interactions with variables that are indicators of 
the extent of adaptation in specification (1). For instance, 
when studying the impact of drought on consumption, one 
may want to include the number of plots or access to irrigation 
as an interaction. Expert knowledge is often used to choose 
these interaction terms, and Stata users can easily couple it 
with a LASSO method to determine which one to include.

Another approach is to control for potential differences in 
adaptation in specification (1) to isolate the direct adverse 
effect of weather shocks. One may want to do so to simulate 
households' consumption distribution without safety nets and 
adaptive behaviors to identify the most vulnerable. If available, 
household fixed effects capture time-invariant confounders in 
specification (1), including household’s adaptation to the climate 
where they live. However, when panel data is unavailable, 
researchers often use geographical fixed effects at a coarser 
level than the spatial unit of observation, such as district fixed 
effects for weather defined at the village level. In this case, 
the difference in adaptation across villages within the same 
district threatens the exogeneity restriction. For instance, in a 
given district, arid areas could be poorer and more frequently 
hit by droughts due to their geography. Controlling for the 
weather shock’s historical distribution (mean or standard 
deviation) may partially address this concern. Indeed, the 
timing of weather shock is likely exogenous conditional on 
its probability distribution. Baquie and Fuje (2020) use this 
method while also building a measure of consumption that 
excludes transfers to assess the impact of adverse weather 
shocks in the absence of formal or informal safety nets. 

Overall, particular attention should be given to the measure 
of consumption used in the regression before interpreting 
the coefficient. The consumption measures used to build 
national consumption aggregates in poverty measurement 
exercises rely on several assumptions regarding the inclusion 
or exclusion of expenses and how to treat missing values. 
For instance, exceptional costs such as hospitalizations are 
often excluded from the consumption aggregate to reflect 
consumption under the permanent income hypothesis. 
This assumption implies that the impact on consumption 
measured in Step 1 may be a lower bound of the effect on 
welfare. The reduction in the magnitude of the coefficient due 
to measurement error should not be mistaken to result from 
adaptation. Therefore, we advise accurately documenting 
the measure of consumption when describing the results 
and performing sensitivity analysis when possible.
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Although there is no perfect specification to separate 
the direct effect of weather shocks from adaptation 
consequences, we suggest carrying robustness checks 
to shed light on this crucial distinction. Depending 
on data availability and the study’s objective, the options 
range from evaluating the impact of weather on variables 
measuring adaptation, including interactions with variables 
reflecting adaptation mechanisms, or controlling for proxies  
of adaptation. 

No matter the chosen specification, understanding 
adaptation is essential to assess whether Step 1’s 
relationship will likely hold in the future. Indeed, since the 
relationship between weather shocks and welfare is estimated 
using historical data, it assumes that adaptation will stay 
constant, which may not hold in the long run. If we want to 
avoid making a theoretical assumption on the magnitude of 
future adaptation, we can restrict ourselves to medium-term 
climate forecasts (0-30 years). Otherwise, we can use the 
understanding developed by applying the methods in this 
subsection to make theoretical assumptions about future 
adaptation and run different scenarios of simulations in Step 
2. Still, the longer the considered time horizon, the higher the 
uncertainty on the adaptation scenarios. 

d.	 Considering the      				  
	 Heterogeneity of Weather                 	
	 Impact on	Welfare Outcomes

Weather impacts on welfare may differ significantly 
across observables, including along dimensions related 
to adaptive capacity as explained above. If so, including 
an interaction term between the weather variable(s) and 
these observables could increase the predictive power of 
Step 1’s model. For instance, the impact of drought on food 
consumption may be higher in rural areas if market access is 
lower and food imports are significant. In that case, including 
the interaction of weather with a dummy variable describing 

rural/urban could improve model’s fit. However, one needs to 
avoid including too many interactions to prevent overfitting, 
and expert knowledge and/or machine learning are often used 
to decide which interactions to include (Blanchard et al., 2023; 
Hill and Porter, 2017). 

When Step 1 includes an interaction term between 
the weather variable(s) and observable(s), additional 
assumptions are required in Step 2. We need to assume 
that the considered observables are exogenous and stay 
constant during the considered time horizon or make a 
theoretical assumption on their change over time. In the 
above example, we would need to assume an exogenous 
scenario of rural/urban migration and the resulting distribution 
to compute the expected measure of consumption. Similarly 
to adaptation action, the longer the considered time horizon, 
the higher the uncertainty on the scenario for the observables. 
As such, considering the heterogeneity of weather impact on 
welfare outcomes is likely to improve the predictive power of 
the model in Step 1, but it complexifies the implementation           
of Step 24.  

e.	 Allowing for Delays                    		
	 and Displacement

We also recommend considering temporal and spatial 
dynamics in robustness checks when data allows. For 
instance, a drought at time t may have long-term consequences 
on consumption. If we have enough years of data, we may 
include lags in specification (1) to capture this persistence 
and potential intertemporal substitution. Falsification tests can 
also be run by including leads. Then, a climatic event's net 
effect is the sum of the lag terms. A similar idea can be applied 
to spatial displacement, where temporal lags are substituted 
with the average climate exposure of all locations at various 
distances of the considered household. If one worries that 
remote effects may be delayed, it is also possible to include 
both spatial and temporal lags.
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As explained in the introduction, Step 2 uses the estimation of specification (1) to simulate 
households’ consumption distribution given the distribution of weather. This methodology relies 
on bootstrapping by drawing states of the world from the assumed distribution of weather. For 
simplicity, most papers have assumed that the distribution of weather is equal to the observed 
historical distribution. In this section, we extend this methodology to consider a distribution 
of weather equal to the forecasted distribution of weather in given climate scenarios 
(also called Shared Socioeconomic Pathways [SSPs]). For instance, the forecasted weather 
distribution could be the forecast made by a climate model in a pessimistic scenario. We discuss 
sources of climate forecasts in what follows and potential caveats when calculating expected 
consumption with their projections. 

Step 2: Predicting the Impact of 
Future Weather by Simulating 
Consumption Distributions 
Resulting from the Forecasted 
Distribution of Weather

>>>



a.	 Sources of Uncertainty

Let us introduce an essential concept when talking about 
climate projections: uncertainty. Indeed, forecasts are 
only helpful if they are somehow accurate. Uncertainty in 
climate models stems from three different sources: emission 
uncertainty, model uncertainty, and climate uncertainty (Burke 
et al., 2015). In what follows, we explain each source and how 
the scientific community assesses them. 

First, we do not have a perfect knowledge of the trajectory 
of all the variables that affect the climate system, from 
greenhouse gas emissions to population growth. Their trends 
depend on many factors, including the chosen development 
path, future economic growth, and technological change. 
This source of uncertainty is called emission uncertainty. 
It is tackled by assuming a given climate scenario 
-Shared Socioeconomic Path- when running climate 
models. International scenarios have been developed to 
ensure the comparability of the models’ results. SSPs range 
from a somewhat optimistic scenario aligned with the Paris 
agreement -SSP1-1.9- to a rather pessimistic one -SSP3-7.0-.

Second, model uncertainty stems from discrepancies 
amongst researchers on modeling choices about the 
underlying physical relationships and how to initialize the 
models. To make the models more comparable, international 
projects coordinate teams to run their models with common 
parameters. One such project is the Coupled Model 
Intercomparison Project, now in its 6th phase (CMIP6). 
Nevertheless, discrepancies exist across the different climate 
models composing the CMIP6 ensemble. 

Many papers ignore model uncertainty by relying on the model 
ensemble's median or mean. However, using a small number 
of models or relying on the ensemble mean or median does 
not capture the full range of potential climate variations. As 
mentioned by Burke et al. (2015), proceeding like this make 
the “findings seem more precise than they actually are, and 
as a result make them less credible among climate scientists 
and potentially misleading for policymakers.” As a result, 
we recommend using the projection of all models in 
the ensemble, even though this process may be more 
computationally intensive. In practice, we would draw 
states of the world from the forecasted weather distributions 
obtained using each CMIP6 model. Doing so includes 
the assessment of model uncertainty in the bootstrap 
estimation of Step 2. Although we could initially give equal 
weight to all models, one could adjust them in future work 

as they learn more about models' biases and their fit to the 
weather patterns of specific regions. The second-best 
solution is to directly use the ensemble mean or median 
or a selected set of climate models predicting the lowest 
and biggest changes in weather. However, in this case, 
the author should state clearly that they ignore model 
uncertainty in their estimates.

Third, climate uncertainty reflects our imperfect knowledge 
of physical processes. There is no fix or estimate for this 
source of uncertainty due to the impossibility of quantifying 
unknown processes and methods.

On top of the three sources of uncertainty associated with 
climate models, regression uncertainty stems from the 
finiteness of the sample and the impossibility of estimating 
population parameters exactly. The estimation of the 
uncertainty due to the estimation of the δ coefficient can 
be included in Step 2 as one would do to estimate the 
coefficient’s standard error by bootstrap (Burke et al., 
2015). In the simulations, one should draw states of the 
world defined by both the sampled projected weather and the 
sampled regression coefficient to evaluate the uncertainty of 
climate models and regression jointly.

Overall, we advise being extremely clear on the assumption 
one makes regarding uncertainty, particularly when 
considering model and regression uncertainty. Reporting 
the resulting welfare metrics with confidence intervals is 
essential to communicate this uncertainty. 

b.	 Sources of Data on               			
	 Climate Change

The most widely used climate projections are the ones 
created by the 33 global climate models (GCM) included 
in the IPCC's CMIP6 coordination effort. These climate 
models are well-studied, comparable, and run for identical 
scenarios (SSPs). Their outcomes can be downloaded as 
NetCDF files defined for a given climate model, forecasted 
weather variable, region, and time-frequency. This practical 
file type is a 4D matrix with the following dimensions: 
longitude, latitude, weather, and time. It can be interpreted as 
a set of stacked maps representing the forecasted weather 
variable for each time step. Figure 3 presents the temperature 
forecast produced by the global climate model cams-csm-1-0 
in the SSP1-1.9 climate scenario for January 1950. Ideally, 
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the downloaded forecast describes the variable Wkt of Step 1 in future years. In some situations, Wkt is a transformation of 
the available forecasted variables. In this case, the researcher must calculate the forecast for Wkt from the available projected 
variables for each climate model, scenario, and time step.

>  >  >
F I G U R E  3  - Global Temperature Forecast for January 1950 Produced by the Global Climate Model cams-
csm-1-0 in the Climate Scenario SSP1-1.9

Near-surface air temperature

Near-surface air temperature (degC)

-39.3 -24.6 -9.8 19.7 34.55.0

Source: World Bank Group (2022), Climate Change Knowledge Portal. File is plotted using the Panoply software.
Note: Data Min = -46.4, Max = 37.6, Mean = 13.2

The global climate models are numerical approximations of 
fluid’s laws of motion computed by discretizing fluids such 
as the ocean and the atmosphere into three-dimensional 
grids which contain a given number of state variables. After 
initialization, the variables at t+1 are calculated using the 
fluids’ law of motion, and the procedure is iterated to compute 
future states of the world over centuries (Auffhammer et al., 
2013). Since climate change is a worldwide phenomenon, the 
grid must cover the whole world. As a result, it cannot have a 
very high spatial resolution for computational reasons. 

To improve the spatial resolution, one could work with regional 
models, including CORDEX (Coordinated Regional Climate 

Downscaling Experiment). Often, regional models combine 
the results from GCMs with regional climate models to predict 
weather inside the GCM grid cells for given regions. Although 
these models have a better spatial resolution, they are less 
comparable and not widely used.

Therefore, we suggest using the projections of the 
CMIP6 GCMs for their comparability. They can be easily 
downloaded on the World Bank’s Climate Change 
Knowledge Platform (CCKP). The CCKP team has 
harmonized the CMIP6 climate models' forecasts for various 
indicators and disaggregated them in 100*100km annual and 
monthly grids. 
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c.	 Aggregation Bias in             			
	 Climate Data

Due to limits in computing power, global climate models can 
only make predictions on relatively coarse grids, usually 
about 2x2 degree cells or 200*200 km. As a result, climate 
may vary significantly within a cell and is often matched to 
more disaggregated data on consumption. This mismatch in 
spatial resolution results in measurement error, also called the 
"aggregation bias." This bias is more substantial when the grid 
cell topography is mountainous or near the ocean because 
climatic differences accentuate (Auffhammer et al., 2013).

Aggregation bias is problematic for studies assessing the 
impact of climate with the above methodology. Indeed, 
suppose that Step 1 is estimated with disaggregated 
observational data and that a GCM model's predictions are 
used for the counterfactual scenario in Step 2. In that case, the 
change in consumption forecasted by plugging the forecasted 
weather in the estimated equation could stem from the impact 
of climate change. However, it could also come from the GCM 
aggregation bias (Auffhammer et al., 2013). The following 
subsections explain how to deal with the aggregation bias.

c.1. Tackling the Aggregation               
Bias: 	Downscaling
The first solution, downscaling, uses the results from the 
global climate models (GCM) as an input to obtain more 
disaggregated climate projections. Two main downscaling 
techniques are used in the literature. 

The first approach, that was mentioned above, is dynamical 
downscaling to increase spatial resolution. It extends the GCMs 
through regional climate models (RCM), such as CORDEX, or 
limited-area models (LAMs). These models are based on the 
same physically consistent processes but provide projections 
at a higher resolution, typically at the 0.5x0.5-degree resolution. 
They are computationally intensive, and their performance 
depends strongly on the biases inherited from the driving 
GCM and the presence and strength of regional forcings, 
such as orography, land-sea contrast, and vegetation cover. 
Over the last two decades, variable-resolution models have 
been developed, combining global-scale climate models with 
embedded regional grids. However, they have not been widely 
used in the literature since their computational burden is even 
higher than RCMs’ requirements (Kotamarthi et al., 2021).

The second approach, statistical downscaling, can be 
implemented with methodologies ranging from simple models 
to artificial intelligence. Some of the most widely used                  
ones are: 

•	 Simple factors (Change Factor, or Delta Method): the 
differences between GCM historical and future projections 
are added to historical observations. This allows to 
include the climate change prediction of the model and 
removes the bias associated with the GCM. A second-
level adjustment can be included to model changes in 
standard deviations.

•	 Regression: historical data is regressed on historical GCM 
predictions, and the estimated coefficients are used to 
predict future local weather from GCM predictions.
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•	 Transforming the distributions by quantiles: this method 
focuses on estimating the extremes. Those models 
explicitly resolve, bias-correct, and downscale the 
quantiles of the distribution. One of the main approaches 
is Empirical Quantile Mapping. It consists in applying the 
Delta Method to each quantile. 

•	 Neural Networks: conditional neural networks are 
increasingly used in the literature. They perform at least 
as well as other statistical downscaling methods and 
circumvent the problem of feature selection (Baño-Medina 
et al., 2021)

In general, those models are relatively easy to implement, but 
this approach does not include climate feedback, and their 
performance may strongly depend on the choice of predictors. 

Downscaling approaches have not been discussed much in 
the Economics literature at the time of writing. The method 
that has been the most widely used so far in the literature is 
similar to the simple factor downscaling. We present it in the 
following subsection.

c.2.	 Recommended Solution to the 
Aggregation Bias: Applying Changes in 
Climate to the Historical Distribution
In the absence of downscaled data for the region and 
period of interest, the most widely used approach in the 
Economics literature is to derive the predicted changes 
between future years and a historical baseline for each 
GCM grid cell before adding it to the observed weather 
data in the historical baseline. This method, similar to simple 
factor downscaling, eliminates the location-specific bias and 

preserves the within-GCM grid variation of the historical data. 
Note that this approach only works if the aggregation bias is 
stationary in time and leaves the variance of the historical time 
series unchanged. If interested in adjusting the variance, one 
can rescale the variance of the historical data by the ratio of 
the variance of the GCM forecasts in future years relative to 
the variance of the GCM forecasts in the historical baseline 
(Auffhammer et al. 2013). 

Finally, this method requires having the same indicator in 
the GCM data and the observed historical data. Therefore, 
before selecting the variable to include in the regression in 
Step 1, one should restrict oneself to indicators that can be 
calculated with the available GCM projection data. One may 
be tempted to regress the historical data indicator chosen in 
Step 1 on variables available in the GCM data to “estimate” 
their relationship and use the fitted values as projections of 
the historical data indicator. However, this is a false good idea. 
Indeed, if the available GCM indicators were not selected when 
working on the regression in Step 1, the linear combination of 
these same indicators will not capture the variation explaining 
the change in consumption either. The relevant source of 
variation will be in the residuals, which are not forecasted. 
Therefore, the variable selected in Step 1 should be the 
same as one predicted by the GCMs, or there needs to 
be a physics formula to calculate this variable from the 
set of variables available in the GCM data. This is crucial 
to applying this method in Step 2. The World Bank CCKP 
provides projections of a large set of weather variables, 
ranging from monthly temperature to cold spells to the SPEI 
drought index. In addition, the CCKP team can help calculate 
specific indicators with GCM data if these indicators rely on 
variables projected by GCMs. 
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Conclusion
>>>

In this note, we present the different techniques used in the literature to include climate change 
into vulnerability analysis and describe a robust methodology. Although we focus on applying 
this method to the impact of climate on consumption, it can be applied to study a wide range 
of topics, from the effects of climate change on diseases to stress-testing social protection 
programs. When doing so, researchers and practitioners should consider some limitations of the 
methodology proposed in this note.
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First, the methodology presented in this note is a partial 
equilibrium analysis. As such, it misses factor reallocations 
across space or time that require a general-equilibrium 
approach. For instance, the identification strategy in this note’s 
methodology assumes that the relationship between welfare 
and weather remains the same in the future. The longer 
the considered time horizon, the stronger this assumption 
becomes. If needed, one may relax the partial-equilibrium 
assumption by adopting a structural approach (Chetty, 2008), 
such as a Computable General Equilibrium (CGE) model 
associated with a microsimulations tool5. The method in this 
note and the CGE-microsimulations tool complement each 
other (The World Bank, n.d.). Indeed, due to the assumptions 
on market clearing, the general equilibrium approach is 
expected to describe long-term outcomes better, and its result 
typically represents a lower bound of effects. On the other 
hand, the partial equilibrium analysis described in this note is 
likely to perform better on short- and medium-term outcomes.

Second, tipping points and unprecedented events would not 
necessarily be well predicted in this type of analysis. The 

relationship estimated in Step 1 relies on historical data and is 
considered fixed over time. Like the discussion on adaptation, 
one would need to make theoretical assumptions about 
tipping points to infer how they would impact this relationship. 
Moreover, unprecedented events such as rising sea levels and 
other major climate events are not necessarily well predicted 
by climate models. Empirical progress on these questions is 
needed (Diffenbaugh et al., 2018).

Third, the bootstrapping exercise in Step 2 is relatively data 
and computationally intensive. One may want to contact IT 
to ensure that they have enough space on their drive and 
available memory to store all climate projections and run all the 
computations required for the project. In that respect, using a 
dedicated virtual machine or storing data on a server can help. 
One may also want to explore task parallelization to speed up 
the computations. The latter can be easily implemented in R 
or on a high-performance computing cluster. 
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1.	 Short-term is a relative notion, but in this context, weather usually refers to changes over periods that are shorter than a 
decade: year, month, or day. 

2.	 The outcome is a solution to a maximization problem with an outcome-generating function depending on climate and adaptive 
actions. This function is continuous and differentiable in the space of all adaptive actions.

3.	 Migration is a coping mechanism in the aftermath of adverse shocks (push migration). However, other factors can drive 
migration decisions, including positive ones (pull migration). One must carefully design their identification strategy to isolate 
the component of interest.

4.	 This method becomes even more complex and computing-intensive if the chosen interaction term is not exogenous. For 
instance, if the observable at t depends on consumption at t-1. In this case, Step 2 could be implemented iteratively after 
assuming a relationship between consumption at t and the interaction term at t+1. Similarly, suppose the relationship in Step 1 
is estimated with quantile regression. In this case, one may assume that consumption at t is informative of consumption at t+1 
to assign a coefficient of weather’s impact to each household. However, this assumption may not hold if the impact of weather 
is significant, and results may be very sensitive to the initial conditions. As a result, we recommend starting the analysis with 
the study of mean effects.

5.	 The World Bank uses several CGE models-MANAGE, MFMOD-to predict the impact of climate change on aggregate macro 
variables. The Equity and Policy Lab’s microsimulations tool uses CGE models’ predictions to estimate the distributional 
impacts resulting from their associated demographic changes and labor transition.

Notes
>>>
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