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Glossary 

Chemical transport model: A complex atmospheric model that uses emission inventories, meteorological data and 
complex gas, particle and multi-phase reaction mechanisms to estimate air pollutant concentrations at ground level.

Dispersion model: Estimates ground-level air pollution levels by combining emission inventories with topographical 
and meteorological data to map the dispersion of a plume of pollution.

Exposure: Product of the pollutant concentration and the time over which a person is in contact with this pollutant.

Geostatistical data fusion model: Refers to a model that combines multiple measurements (e.g. satellite and 
reference monitors) and modelling (chemical transport model, land-use regression model) methods within a 
statistical framework to estimate air pollution levels.

Land-use regression model: A statistical regression model that estimates air pollution at ground level by mapping 
the relationship between pollutant measurements and the land-use practices surrounding those measurements.

Low-cost sensor: Low cost in this context typically refers to the cost of the basic sensing analytical component 
(sensor) needed to make a measurement and does not reflect the total operational costs of using sensor systems.

Machine learning algorithm: Mathematical model that maps the relationship between training and test dataset to 
uncover underlying patterns embedded in the data and predict new data.

Passive diffusion sampler: Refers to materials that absorb pollutants through passive diffusion. These samplers 
require chemical analyses to derive the pollutant concentration.

Personal direct reading instrument: Portable and/or wearable monitors that measure specific pollutants with 
fairly good accuracy at a high temporal resolution. These instruments sometimes use similar operating principles to 
reference-grade instruments. They are usually employed in occupational health and safety assessments.

Reference-grade monitor: Instruments that measure specific pollutants with high accuracy at a high temporal 
resolution. These instruments are based on standardized operating principles for specific pollutants. They are 
generally used by government agencies to ensure compliance with regulatory requirements.

Time-integrated data: A single measurement for the monitoring time period.

Time-resolved data: Multiple measurements across the monitoring time period based on the user-specific frequency.
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Executive summary

Exposure to air pollution is the second leading cause of deaths from noncommunicable diseases 
(NCDs), after tobacco smoking. WHO estimated for 2019 that 6.7 million premature deaths were 
attributed to ambient and household air pollution from particulate matter (PM) with a diameter less 
than 2.5 μm (microns) (PM2.5). In 2021, WHO issued updated and more stringent air quality guidelines 
(AQG), reflecting updated evidence that air pollution is associated with adverse health effects at lower 
concentrations than previously recognized. The recommended annual mean PM2.5 level changed from 
10 to 5 μg/m3 (WHO, 2021).

In an effort to support the adoption and implementation of the WHO AQG, this document summarizes 
several air quality measurement and modelling methods that can be used to estimate ground-level 
air pollutant concentrations and presents multiple approaches to monitoring ambient air pollution at 
different spatial and temporal scales. These methods are crucial for estimating population exposures, 
which can be defined as the product of the pollutant concentration and the time over which a person 
is in contact with this pollutant.

Air quality measurements and models are presented in order of increasing complexity/technology, 
starting with the least complex. For each method a brief description is provided followed by its 
strengths and limitations as well as a few examples of global or regional applications. A comparison 
with advantages and disadvantages for each monitoring method is then presented, followed by a brief 
discussion on exposure disparities. Fig. ES1 shows the measurement and modelling methods in order 
of increasing difficulty of implementation. It is important to note that these methods can be applied to 
cities, countries and globally, but that no single method is perfect. Usually, multiple methods are used 
by countries as models require measurements for calibration and validation.

Fig. ES1 Measurement and modelling methods for monitoring air quality 
 

Note: The most complex methods are the most difficult to implement.
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When deciding on how to best develop or improve their air pollution monitoring capability, countries 
can assess the ease of implementation within constraints: cost (capital and operating); human/
technical resources; and computational and energy requirements. For example, a country that has no 
monitoring may consider setting up a reference-grade monitor and complementing this monitor with 
passive samplers (low cost, low human resources for deployment, no energy requirement) or low-cost 
sensors (LCS) (low capital cost but medium operating cost, medium technical resource for calibration 
and modeller expertise, low energy but medium computing needs for big data) and dispersion 
modelling (medium capital cost, medium modeller expertise, medium computing needs). Countries 
with a sparse monitoring network may consider increasing the density of their reference-grade 
monitors as well as developing locally calibrated chemical transport models (CTMs) (medium capital 
cost, high modeller expertise, high computing needs).

Policy-makers and government officials can use the available methods summarized in this document 
to assess their country’s baseline air quality levels as well as monitor progress resulting from air 
pollution reduction policies. The document can further help officials develop plans for air quality 
monitoring and data management. It is also relevant in assisting national and local authorities 
responsible for protecting public health from the adverse effects of air pollution. Ideally, every 
nation should have access to at least one reference-grade monitor – opening the door to many other 
air quality methods. More importantly, no single method can address the entirety of a country’s 
air quality problem, and nations may want to employ a mixture of measurements and modelling 
methods to address their local air quality issues while balancing their national priorities and resource 
availability. Ultimately, multiple methods are needed for a comprehensive air quality management 
knowledge base and capability. Countries are encouraged to use as many of these approaches as 
needed, based on their circumstances and capabilities.

viii
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Chapter 1 Introduction

Air pollution represents the largest environmental risk 
to public health worldwide. In 2019, WHO estimated 
6.7 million premature deaths from particulate matter, 
defined as particles smaller than 2.5 μm (PM2.5) small 
enough to penetrate into the alveoli. Over 99% of people 
worldwide are exposed to harmful levels of PM2.5 (WHO, 
2022a). However, the distribution of this harmful air 
pollution varies substantially across the globe, with 
populations in many low- and middle-income countries 
(LMIC) suffering from the highest air pollution exposures, 
and some countries experiencing levels of PM2.5 that are 
five times higher than the WHO AQG. 

Exposure, as defined by the WHO, is a product of the 
pollutant concentration and the time over which a 
person is in contact with this pollutant (WHO, 2021). 
While exposure is not the same as concentration, for 
the purpose of this document, when exposure and 
concentration are used interchangeably, it refers to the 
concentration of the pollutant over the time of exposure. 
In addition, the methods that can be used to assess 
population exposure for health impact assessments are 
also used in air quality networks to assess changes in 
pollutant concentrations.

This document reviews and summarizes the latest 
measurement and modelling methods and presents 
multiple methods to monitor ambient air pollution 
that can be used locally, provincially and nationally 
for different pollutants and spatial-temporal scales. 
One of the expected outcomes of this document is a 
list of monitoring methods that can enable population 
exposure assessment for epidemiological studies and 
health impact assessments, which can be incorporated 
into the existing framework for estimating global 
exposure to air pollution, specifically PM2.5 (Sustainable 
Development Goal [SDG] Indicator 11.6.2).

Another potential use of this broad overview of methods 
for ambient air pollution exposure is to present 
monitoring methods that policy-makers and government 
officials can use to develop or improve their knowledge 
base on air pollutant concentrations and on tracking 
the effectiveness of air pollution reduction policies. 
By including a diverse range of available methods for 
monitoring air pollution levels and highlighting their 
advantages and disadvantages, this document can help 
LMIC find methods to assess their population exposure 
to air pollution that are best suited to their country’s 
social, economic and environmental conditions. 

1.1 Common sources of pollutants and their associated health effects

Particulate matter 
Particulate matter is a mixture of solid particles and 
liquid droplets and is classified according to its diameter. 
PM10 are particles that have a diameter less than 10 
μm, while PM2.5 are particles with a diameter less than 
2.5 μm. Particles with a diameter less than 0.1 μm are 
commonly called ultrafine particles (UFP), however, 
quasi-ultrafine particles refer to particles substantially 
smaller than 1 μm but larger than 100 nanometres 
(nm) (WHO, 2021). While PM2.5 and PM10 are typically 
measured in terms of mass concentration, UFP are 
measured in terms of particle number concentration 
(PNC). Sources of PM10 will mainly consist of sea 
spray and wind-blown dust from agricultural sources, 
roadways and mining operations. PM2.5 and UFP can be 
derived from primary sources (e.g. combustion of fuels, 

forest fires, agriculture waste burning) and secondary 
sources (e.g. chemical reactions between gases). An 
example of the reaction pathway for the formation of 
secondary source particles is the reaction of ammonia 
emitted from, for example, agricultural activities, with 
nitric acid, which is derived from nitrogen oxides (NOx) 
mostly emitted from vehicle exhaust or industries, 
to produce ammonium nitrate particles. UFP can be 
emitted directly or formed in the air from gaseous 
precursors from sources such as transportation (e.g. 
vehicles, planes, ships) and industry (e.g. power 
plants). While the focus of this report is on measuring 
ambient air pollution, it is important to note that our 
total exposure to air pollution occurs both outdoors 
and indoors. With this in mind, important sources 
of particulate matter originating from households 
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(which can be considered as both indoor and outdoor 
pollution) are also included: cooking, heating and 
lighting with polluting fuels and technologies such as 
biomass (e.g. wood, charcoal, crop residue). Additional 
indoor sources of UFP include electric appliances 
such as stoves and toasters, tobacco smoking and the 
burning of candles or incense.

As epidemiological studies have shown that air 
pollutants can have both adverse short- and long-term 
effects, most national air quality standards recommend 
exposure limits for both short-term (e.g. 24-hours) and 
long-term (e.g. 1 year) averaging times for pollutants 
(EU, 2021; US EPA, 2023a). Long-term exposure to 
PM10 is moderately associated with increased risk of 
death from ischaemic heart disease (IHD) and chronic 
obstructive pulmonary disease (COPD). For PM2.5, 
long-term exposure is strongly associated with lung 
cancer, IHD, cerebrovascular disease and COPD, and 
moderately associated with respiratory diseases. 
Short-term exposure can lead to asthma exacerbations 
and respiratory infections (Chen and Hoek, 2020). 
Owing to the smaller size of PM2.5, this pollutant can be 

more harmful to human health as it can reach deeper 
into the respiratory tract than the larger particles. 
Short-term effects of exposure to UFP include, 
emergency department visits, hospital admissions, 
respiratory symptoms and effects on pulmonary/
systemic inflammation, heart rate variability and blood 
pressure; long-term effects include mortality (all-cause, 
IHD, cardiovascular and pulmonary) as well as several 
morbidity effects (HEI, 2013; Ohlwein et al., 2019). UFP 
has also been associated with systemic inflammation 
in children (Clifford et al., 2018). It is important to note 
that particulate matter can adversely impact health 
even at low annual average concentrations (Brunekreef 
et al., 2021; Dominici et al., 2022). Given this, WHO AQG 
recommend annual mean levels of less than 5 μg/m3 

for PM2.5 and 15 μg/m3 for PM10. For 24-hour means, the 
guideline values are 15 μg/m3 and 45 μg/m3 for PM2.5 
and PM10, respectively (WHO, 2021).   

Nitrogen dioxide
Nitrogen dioxide is a gas and the main ambient 
sources of NO2 are high temperature combustion 
of fuels used in engines (e.g. motor vehicles and 
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ships), electrical generation and industrial processes. 
Household sources of NOX, defined as the sum of 
nitric oxide (NO) and nitrogen dioxide (NO2), include 
fuel-burning furnaces, fireplaces and gas stoves and 
ovens. Exposure to NO2 is associated with asthma 
hospital admissions and emergency room visits 
in the short term and mortality from respiratory 
illnesses in the long term (Huangfu and Atkinson, 
2020). The recommended WHO AQG value for NO2 is 
10 μg/m3 (annual mean, 5.3 ppb) and 25 μg/m3 (24-
hour mean, 13.3 ppb).

Carbon monoxide
The predominant sources of carbon monoxide (CO) in 
ambient air are motor vehicles (Krzyzanowski et al., 
2005). Similar to NOX, CO can contribute to household 
air pollution from any process that can result in 
incomplete combustion of fuels (e.g. furnaces, 
fireplaces). Short-term exposure to CO has been 
associated with hospital admissions and mortality 
from myocardial infarction (Lee, Spath et al., 2020). 
WHO has recommended a guideline value for CO of 4 
mg/m3 (3.5 ppm) for an averaging time of 24 hours.

Ozone
Ozone (O3) is a gas that can be found in the stratosphere 
and at ground level. While stratospheric O3 is formed 
naturally and provides protection from the sun’s 
ultraviolet radiation, ground-level O3 does not. It is 
a secondary pollutant that is created from chemical 
reactions involving volatile organic compounds 
(VOC), NOX and CO in the presence of sunlight. Unlike 
primary pollutants which are emitted directly from 
a source, secondary pollutants are formed through 
the reaction of other pollutants. Ozone is one of the 
main components of photochemical smog. It is worth 
mentioning that O3 can also be generated by household 
consumer products, such as portable air cleaners that 
are equipped with O3 generators. Acute exposure to 
high levels of O3 can lead to reduced lung function 
and increased airway inflammation. Several studies 
have shown associations between increased hospital 
admissions and mortality from respiratory illness and 
high O3 levels (Huangfu and Atkinson, 2020). WHO 
recommends a guideline value of 100 μg/m3 (51 ppb) for 
an 8-hour daily maximum and 60 μg/m3 (30.6 ppb) for 
an 8-hour mean peak season (WHO, 2021).
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Chapter 2 Factors to consider when assessing population 
exposure to ambient air pollution  

1 Some government agencies offer guidelines for recommended reference-grade instruments, such as the United States Environmental Protection Agency 
(US EPA, 2022).

When assessing the global burden of disease from air 
pollution (SDG Indicator 3.9.1), WHO leverages both 
model estimates and observed measurements to 
estimate global air pollution levels. This global estimate 
of ambient air pollution levels (SDG Indicator 11.6.2) 
uses a data fusion model, the Data Integration Model 
for Air Quality (DIMAQ), to derive annual average levels 
of PM2.5. DIMAQ uses a Bayesian hierarchical modelling 
framework to combine geophysical satellite-derived 
estimates of PM2.5 with ground-level reference monitors, 
CTM output and land-use data. A strength of DIMAQ is 
that it uses a hierarchical modelling approach in which 
country-specific calibration functions are used and data 
are “borrowed” from the surrounding regions where 
local monitoring data are adequate for model calibration 
(Shaddick, Thomas, Green et al., 2018).

While these global air quality estimates are required 
for SDG 11.6.2 reporting, and they enable us to monitor 
the progress of the global burden of disease from air 
pollution, their applicability for addressing country-
specific concerns and/or policies may be limited due to 
the granular temporal and spatial scale of these annual 
estimates (Shaddick et al., 2021). Since air pollution 
tends to be unevenly dispersed across space (e.g. 
urban vs rural areas), using DIMAQ’s annual average 
concentration, which represents the same population 
exposure across a 11 km x 11 km grid, can resolve urban 
and rural differences but it may not identify intra-urban 
or intra-rural variability within a given country. The more 
local data (e.g. country-specific measurements and time-
activity patterns) that countries can use in population 
exposure assessments, the greater the likelihood that 
the estimated population exposure is closer to an 
individual’s exposure as it encompasses total exposures 
across different microenvironments (e.g. homes, offices, 
vehicles, cities), which can be very different from the 
ambient air pollution levels used in global studies 
(WHO Regional Office for Europe, 1999). The importance 
of monitoring local air pollution cannot be overstated, 

but it is also crucial to improve the local data collection 
duration as a longer duration of historical data can 
allow more robust exposure estimates and health 
impact assessments.

Assessing population exposure to air pollution is 
typically achieved using observed measurements (e.g. 
reference-grade monitors1), model estimates (e.g. CTM) 
or a combination of these two (e.g. geostatistical data 
fusion model and land-use regression [LUR] model). 
The use of reference-grade monitors is traditionally 
preferred for monitoring networks as they enable 
the baseline assessment of air quality levels as well 
as the tracking of long-term progress in air pollution 
objectives. These reference monitoring networks are 
valuable because of their precision, and they can 
also help identify whether the air quality level meets 
national standards, as well as identify populations 
with disproportionate exposure to air pollution. 
Without these monitors, one cannot objectively 
evaluate if policies have had any impacts. Usually, the 
question being addressed by the population exposure 
assessment can influence the suitability of the air 
quality monitoring method. Furthermore, the choice of 
the monitoring approach is typically not only driven by 
the scale considered (i.e. urban, national or regional) 
but also by the objective of the air quality monitoring 
network. For example, for a country interested in 
determining its baseline air pollution levels, reference 
monitors would be best suited for monitoring temporal 
and spatial variability. On the other hand, if the country 
is interested in assessing the impact of policies, then 
combining reference monitors and data fusion models 
would be best suited for monitoring trends and 
forecasting. Fig. 1 illustrates the usability of different 
population exposure methods for specific applications 
(e.g. spatial and temporal variability). More often 
than not, one method can rarely achieve a nation’s air 
quality objectives, and a combination of models and 
measurements is usually needed.
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Fig. 1. Span of current capabilities and applications across different types of air pollution measurement 
and modelling networks 

 Source: Adapted from Peltier et al., 2020 (An update on low-cost sensors for the measurement of atmospheric composition).

One of the main considerations in monitoring air pollution 
is the desired temporal and spatial resolution that a 
country wants to capture. For example, a country that is 
interested in collecting many air pollution measurements 
within an hour (e.g. high temporal resolution) may find 
that reference-grade monitors, personal direct reading 

instruments (PDRIs) and/or dispersion models are more 
appropriate for their application (Fig. 2). Alternatively, if 
the purpose is to collect many measurements across a 
wide geographical area (i.e. high spatial resolution), the 
use of multiple passive samplers, satellite data and/or LUR 
models is more appropriate. 

Fig. 2. A quadrant analysis that clusters air quality measurement and modelling methods across 
different temporal and spatial resolutions
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Three key factors that countries may want to consider 
when deciding on how to best develop their capacity and 
knowledge base for monitoring air pollution include: 

•	 cost – both up-front and long(er) term costs such 
as full financial modelling of capital costs for 
acquisition and maintenance of monitors;

•	 staffing – human resource capacity; and 
•	 computational and energy requirements. 

Table 1 illustrates the level of the resources required 
for each measurement and modelling method. These 
three selection criteria can be overlaid with country-
specific constraints to determine the optimal method 
for monitoring air pollution and assessing population 
exposure. For example, a country that has cost 
constraints may find passive diffusion samplers and LCS 
more attractive solutions for monitoring air pollution 
exposure. Additional information on the advantages and 
disadvantages of each monitoring method is presented 
in section 3.3.

Table 1. The cost, human and computational resource requirements associated with each air quality 
measurement and model

a Passive diffusion samplers are analysed by external labs after they have collected air pollution levels derived from natural air flow. While they do not need an energy 
supply, they cannot measure short-term pollutant levels or non-compliance with standards and these measurements do incur the additional costs of the analysis 
and shipping to approved laboratories.
b Satellites are deployed and maintained by international agencies which makes the cost and energy requirements not applicable for countries. While the 
measurements (i.e. column densities) collected are usually made publicly available, some modelling is required to convert the satellite measurements into air 
pollution concentrations. It should be noted that several institutions have developed satellite-based model estimates for public use.

Cost Human/Technical Resources 
Required

Computational/Energy Requirements

MEASUREMENTS

Passive diffusion samplersa Low capital Low for sample deployment Not applicable

Low-cost sensors Low capital and medium 
operating

Medium maintenance and 
calibration
Medium modeller expertise

Low energy and medium computing 
needs for big data

Personal direct reading 
instruments

Medium capital and operating Medium maintenance and 
calibration

Medium energy and computing needs

Reference-grade monitors High capital and operating High maintenance and calibration High energy and
medium computing needs

Remote sensing satellitesb Not applicable High modeller expertise Not applicable

MODELS

Land-use regression models Low capital (proprietary 
geographic information system 
[GIS] data)

Medium modeller expertise Low computing needs

Dispersion models Medium capital (proprietary 
software)

Medium modeller expertise Medium computing needs

Chemical transport models Medium capital High modeller expertise High computing needs

Machine learning models Low capital (open-source 
algorithms)

Medium to high modeller 
expertise

Medium computing needs

Geostatistical data fusion models Medium capital
(proprietary software)

High modeller expertise High computing needs

The following sections cover measurement and modelling 
approaches that can be used to assess a country’s 
ambient air quality level depending on timescale and 
spatial resolution of interest. Air quality measurements 
and models are presented in order of increasing 
complexity/technology starting with the least complex 
approach. For each method a brief description is 
provided followed by its strengths and limitations as 
well as a few examples of global or regional applications. 

A comparison of the strengths and weaknesses of 
individual measurement and modelling approaches, as 
well as machine learning and geostatistical data fusion 
methods, which combine air quality measurements 
and simulation modelling into a statistical model, are 
presented. The final sections highlight future work that 
can be done to reduce exposure disparities and improve 
population exposure assessments.
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Chapter 3 Overview of methods for monitoring ambient air 
pollution and assessing population exposure

3.1 Air quality measurements

3.1.1 Passive diffusion samplers

Passive diffusion samplers are devices (e.g. badges or 
tubes) that contain chemical reagents to absorb gases 
of interests without the use of pumps. They are usually 
set up at multiple locations for a minimum of 1 day to 
a maximum of 2 weeks to collect time-integrated data 
(i.e. a single measurement for the monitoring time 
period). The deployment of the samplers simultaneously 
or within a couple days apart reduces the influence of 
synoptic meteorological changes on the data collected. 
After the samplers have absorbed the ambient pollutants 
they must be sent to a qualified laboratory to determine 
the volume concentration of the pollutant absorbed 
(EEA, 2020). A similar process is applied to tree lignin to 
quantify air pollution that has been absorbed by plants.

Pollutants that can be quantified by passive diffusion 
tubes or badges commonly include NOx, VOC and carbon 
monoxide. It is important to remember that once these 
samplers become saturated (i.e. they can no longer 
absorb any more air pollutants) their estimated air 
pollution concentration can become inaccurate if the 
time the sampler became saturated is not known (US 
EPA, 2015). 

A main advantage of passive samplers is their 
zero-energy requirement, which allows users to easily 
deploy them to quantify concentrations near diverse 
source locations that do not have access to a power 
source. For example, if a study is interested in measuring 
air pollution from a roadway, passive samplers can be 

attached to streetlights or appended to building façades. 
However, it is recommended that when deployed, 
passive samplers are co-located with at least one other 
sampler. This duplication or triplication of samplers 
allows users to perform quality control checks after the 
sampling campaign has been completed (CEN, 2019). 
Other benefits of these samplers are their low cost and 
light weight. However, the cost (especially for LMIC) 
associated with outsourcing the quantitative analysis 
to laboratories that may be located outside the country 
of interest can significantly increase analysis costs and 
must be included in users’ cost assessments.

Passive diffusion samplers can also be used to assess 
the spatial distribution of air pollution over a fixed 
time period (CEN, 2002). As passive samplers can 
capture a snapshot of spatial variability in air pollution, 
multiple sampling campaigns are usually conducted 
to classify the spatial variations in air pollution across 
different seasons and meteorology. While the spatial 
scale covered by these samplers is driven by the 
number of samplers located within a given area, the 
time-integrated data collected by these samplers can 
indicate what sources are being recorded. For example, 
a sampler that collects 2-week average concentrations 
is likely to represent the average urban background 
or rural exposure, while a sampler with daily time 
resolution can potentially detect day-to-day changes in 
traffic emissions (e.g. weekday vs weekend) as well as 
the influence of meteorology.

Box 1. Example of passive diffusion samplers used in regional applications
These samplers continue to be used by some European countries such as Finland and Germany to 
supplement their air quality monitoring network as well as to validate national air quality models. 
An example of this can be seen in Flanders where the Flanders Environment Agency used passive 
NO2 samplers to develop a reliable spatial mapping of NO2 concentrations, which was then used 
to improve the predictive capability of the existing air quality model (EEA, 2019b). These samplers 
were also integral in the development of early land-use regression models (Hoek et al., 2008).
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3.1.2 Low-cost sensors 

The availability of LCS has rapidly increased within 
the last decade (Morawska et al., 2018). In addition, 
countries, particularly in regions with no high-quality 
data, are showing growing interest in measuring and 
using data from LCS, which can range in size from 
portable instruments to larger systems more suitable 
for fixed monitoring sites. Some examples of pollutants 
measured by LCS monitors that have been used for 
community/citizen science and live air quality maps 
include, NO2, CO, O3, VOC, particulate matter and 
radiation (UNEP, 2023). 

The most common limitation associated with LCS is low 
accuracy, which is exacerbated by interference from 
other gases and meteorological conditions. For example, 
the accuracy of particulate matter measurements 
is heavily influenced by relative humidity levels and 
temperature. They are also less sensitive to changes in 
air pollution levels than high-quality monitors (Clements, 
2022). These sensors are also prone to drifting baselines 
due to changes in the sensor’s conductivity or resistance 
over time, with electrochemical sensors showing more 
long-term drift than metal oxide sensors (Spinelle, 
Gerboles et al., 2017). For this reason, it is important to 
periodically calibrate these sensors with reference-grade 
monitors to ensure that the calculated air pollution 
concentration is accurate (Castell et al., 2017). For more 
technical information about the operating principles 
used in LCS, refer to the Annex.  

One of the advantages of LCS is their low capital cost. 
These sensors can be obtained for a few hundred dollars; 
however, the operational costs can vary significantly 
within the range of thousands of dollars (Peltier et al., 
2020). They also collect time-resolved data (i.e. multiple 
measurements within the monitoring time period). 
For example, metal oxide sensors, which are used to 
measure gases, tend to have response times ranging 
from 1 to 5 minutes. Another benefit of LCS is their 
portability, making it easier to deploy these monitors in 
locations where it is not feasible to use larger reference-
grade monitors or to measure individuals’ level of 
personal exposure to air pollution. In addition, these 
sensors have low power requirements, which reduces 
the operating cost and makes the expansion of an air 
quality monitoring network more cost-effective for LMIC. 
Further, the low power required to operate these sensors 
can be fulfilled by solar-powered batteries, which then 
creates opportunities for monitoring air pollution in rural 
areas without access to electricity. 

A recent report by the World Meteorological Organization 
(Peltier et al., 2020) assessed several studies that 
used LCS and concluded that they are not yet suitable 
for replacing reference-grade monitors but could 
complement them through more versatile applications. 
In countries with limited reference monitors, LCS could 
be added to the monitoring network to improve the 
spatial coverage of air quality data being collected. The 
importance of quality assurance and quality control 
of data from LCS should, however, be emphasized in 
order to reduce the inaccuracy of their measurements 
(Karagulian et al., 2019). 

Box 2. Example of low-cost sensors used in regional applications
In a regional study by Liu et al. (2020), the long-term performance of the community monitoring 
programme Knowing Our Ambient Local Air-quality (KOALA), in China and Australia, found that 
particulate matter LCS performed best when relative humidity levels were less than 75% and 
temperatures were above 0 °C. Furthermore, the sensors were better able to assess PM2.5 pollution 
from background emissions rather than local traffic impacts in urban areas.

LCS are also being used by the European Environment Agency and national environmental 
protection agencies through the CleanAir@School initiative to improve understanding of children’s 
exposure to air pollutants such as NO2 in the outdoor school environment. For example, in Scotland 
LCS were used instead of passive samplers so that they could identify when air pollution levels 
peaked and what activities (e.g. drop-off and pick-up by car vs buses) were associated with those 
high exposures (EEA, 2019). 
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Box 3. Example of personal direct reading instruments used in regional applications
Numerous studies have been conducted on children’s exposure to UFP in several countries 
(Australia, Bhutan, China, Ghana, Italy) using small instruments that can be carried/worn 
(Buonanno et al., 2012; Mazaheri et al., 2014; Nyarku et al., 2019 and 2021; Wangchuk et al., 2015). 
Among other aspects, the studies investigated the impacts of lifestyle and sociocultural factors on 
the exposure to UFP in different microenvironments, demonstrating the opportunities and urgency 
for the control of UFP exposure.

The monitoring of UFP faces numerous challenges, one being that there are still discussions 
about which parameter(s) to measure (Cassee et al., 2019). Particle number/size distributions are 
most commonly measured with relatively well-established methods; however, there is no agreed 
standard method, making it difficult to compare results from different exposure/epidemiological 
studies or use the data for large population-based epidemiological studies. To overcome this, WHO 
AQG (WHO, 2021) proposed to: “Quantify ambient UFP in terms of particle number concentration 
(PNC) for a size range with a lower limit of ≤ 10 nm and no restrictions on the upper limit”. UFP are 
currently monitored using PDRI that are small and suitable for personal exposure measurements, 
as there are no reference-grade instruments or LCS available to measure this pollutant. 

3.1.3 Personal direct reading instruments 

Personal direct reading instruments are portable 
instruments commonly used by industrial hygienists, and 
health and safety professionals to assess occupational 
exposures. These small-scale, “personal” monitors 
exist for a variety of important pollutants including 
particulate matter, CO, NOx and O3. Some instruments 
collect time-integrated data (i.e. a single measurement 
for the monitoring period) while others collect time-
resolved data (i.e. multiple measurements within the 
monitoring period based on the user-specific frequency). 
For more technical information about the operating 
principles used in different PDRI refer to the Annex. 
Since these instruments are lightweight and compact, 
they allow users to collect accurate and high temporal 
resolution data across the different microenvironments 
that an individual may be exposed to which is critical 
to assessing an individual’s time-weighted average 
personal exposure. In addition to being used for 
regulatory purposes to ensure compliance with 

occupational health and safety, these instruments are 
also commonly used by research scientists interested 
in measuring the spatial and temporal variability 
of pollution at multiple locations and time periods 
(Koehler and Peters, 2015). Given their portability, these 
instruments can be coupled with mobile platforms 
(e.g. walking, cycling, driving) and global positioning 
systems to capture a snapshot of air pollution exposures 
over a wider geographic area. The capital cost 
associated with these instruments tends to lie between 
reference-grade monitors (which are typically the most 
expensive) and LCS; however, there are some PDRIs 
that are comparable in cost to LCS. These instruments 
also require periodic calibration and maintenance, 
which adds to the operating cost. One of the main 
disadvantages of these instruments is that they cannot 
collect air quality data over the long term, which is an 
important consideration as historical data can allow 
more robust health impact assessments.
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3.1.4 Reference-grade monitors 

Reference-grade monitors are commonly used in air 
quality monitoring networks and can collect ground-
level air pollution measurements in different averaging 
times (e.g. measurements reported at hourly or daily 
averages) for regulatory purposes. Traditionally, these 
monitors are deployed in areas of high population 
density, or in areas of specific concern, and these 
monitoring locations do not necessarily capture intra-
urban or urban-rural gradients. While these instruments 
can offer long-term coverage of air pollution at a high 
temporal resolution, in several countries, reference-
grade monitors have not been deployed at the spatial 
scale needed to measure intra-urban variability, but they 
could be with adequate financial and human resources. 
Across the globe in 2019, there were approximately 
6700 and 4000 human settlements collecting data on 
PM10 /PM2.5 and NO2 (WHO, 2022b). However, the spatial 
distribution and monitoring density of these reference-
grade instruments vary significantly across the globe. 
For example, European countries and the United 
States of America have two to three and 3.4 monitors, 
respectively, measuring a million of their inhabitants’ 
air pollution exposure, whereas countries such as India 
use one monitor for every 6.8 million people (Brauer et 
al., 2019), roughly one-twentieth the monitoring density 
of Europe and the United States of America. In several 
countries in sub-Saharan Africa, reference monitors 
are non-existent (Amegah and Agyei-Mensah, 2017). 
Globally, there is inequality in monitoring environmental 
risk factors and a limited capacity to detect intra-urban 
spatial variations across LMIC and even high-income 
countries (HIC). 

A crucial aspect that determines the location of a 
reference monitor within a country is the purpose or 
objective of the monitor (i.e. what question will be 
answered by the air pollution data collected by the 
monitor). Generally, countries locate most reference-
grade monitors that are used for regulatory purposes 
in urban areas where population density is greatest, 

while fewer instruments are situated in rural areas 
(EEA, 2022). It is common to locate reference-grade 
monitors in different areas that represent diverse 
emissions sources but not too close to any specific 
source (e.g. very close to a road or major industry). 
Table 2 illustrates some of the common classifications 
for monitoring sites and detailed description of each 
site type (EU, 2008). For example, instruments can be 
installed in areas close to industrial facilities or major 
roadways if a country is interested in monitoring the 
impact of air pollution from industrial or traffic sources, 
respectively. It is also important to set up a reference 
monitor in a background location that is far away from 
any local sources (e.g. traffic or industrial emissions) so 
as to identify the air pollution levels associated with the 
regional background or transboundary influences. This 
approach allows monitoring agencies to calculate the 
pollution contribution from known or suspected sources 
by subtracting the regional background difference. Such 
regional background monitoring sites are fundamental 
to the European Monitoring and Evaluation Programme 
(EMEP, 2001). The process of situating a reference-
grade monitor is standardized by most government 
agencies (CCME, 2019; Nagl et al., 2019). As air pollution 
concentrations can be greatly influenced by the distance 
of the air sampling inlet from a roadway, height of the 
sampling inlet and presence of trees or buildings near to 
the sampling inlet, it is important to carefully consider 
the location of an instrument before installation. It 
should also be mentioned that these siting protocols 
are currently being adapted for LCS (US EPA, 2023b). 
The type of reference-grade instruments used to 
record ambient air pollution varies across countries 
but the scientific principles that these instruments 
use are generally similar. Some government agencies 
offer guidelines for recommended reference-grade 
instruments, such as the European Committee for 
Standardization (CEN, 2017) and US EPA (US EPA, 2022). 
For more technical information about the operating 
principles used in reference monitors refer to the Annex.
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Table 2. Possible monitoring locations relevant to exposure assessment

Source: Adapted from WHO Regional Office for Europe, 1999 (Monitoring ambient air quality for health impact assessment).

While reference-grade monitors are costly, they 
are considered to be the most reliable and accurate 
instruments for long-term monitoring of a country’s 
air pollution concentrations, which is essential for 
assessing health impacts from air pollution exposure. 
However, it is important to note some of the difficulties 
that LMIC can face in setting up reference monitors, 
including continuous power supply, which can be 
problematic if there are frequent power outages, and 
periodic calibration and maintenance, which affects the 
completeness and quality of the data collected in these 

settings. Also, procurement and delivery of equipment 
parts or maintenance services can be difficult or delayed 
by several months which can affect the temporal coverage 
of a country’s data. Despite these constraints, the high 
temporal resolution, longevity and sensitivity to specific 
pollutants makes reference-grade monitors the preferred 
instruments for regulatory agencies to capture short-term 
emission exceedances as well as long-term pollution 
trends. Ideally, every nation should have access to at 
least one reference-grade monitor in an urban centre and 
another monitor in a rural area.

SITE CLASSIFICATION DESCRIPTION

Urban centre An urban location representative of urban centre pollution levels in towns or city centres 

Urban background An urban location removed from local sources of pollution and representative of city-wide 
background emissions

Suburban or residential A location outside of the urban core situated in a residential area 

Near road A site within 15 m of a busy road

Industrial An area where industrial sources significantly contribute to peak or long-term levels

Rural An open area that is far from roads, and industrial areas 

Other Any location close to special emission sources or vulnerable populations (e.g. hospital, day care 
centre)

Box 4. Example of reference-grade monitors used in a global application
The WHO ambient air quality database is a compilation of annual mean concentrations of ground-
level measurements of PM10, PM2.5 and NO2 from reference-grade monitors. These measurements 
are obtained from official national and subnational reports and websites as well as regional 
networks (WHO, 2022b). The 2022 version of the database includes annual means for PM10, PM2.5 
and NO2 for the years between 2010 and 2019, and it covers around 6700 human settlements in 
117 countries worldwide (Fig. 3). Comparison of the ambient air quality database PM2.5 and PM10 
levels by income group showed higher exposure levels in LMIC, by a factor of about three, when 
compared with HIC. However, a different pattern was observed for NO2 levels, where HIC and LMIC 
reported more homogeneous concentrations. Globally, only the population within 10% of the 
assessed settlements were exposed to annual mean levels of PM2.5 and PM10 that complied with the 
AQG. This proportion increased to 31% for interim target 4 (2005 WHO AQG: 20 μg/m3 for PM10 and 
10 μg/m3 for PM2.5). 
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Fig. 3. Location of settlements with data on PM2.5 concentrations, 2010–2019

1 Some examples of commonly used statistical model frameworks include machine learning, geographically weighted regression.

PM2.5 (μg/m3)

≤5
5 ≤10
10 ≤15
15 ≤25
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>35

Source: WHO, 2022b (WHO air quality database).

3.1.5 Remote sensing satellite instruments

Satellite data have become increasingly popular for 
assessing global exposures. Within the last decade 
there have been rapid improvements in both the 
temporal and spatial resolution of air pollutant 
measurements collected by satellite. Several national 
agencies have deployed satellite instruments for 
remote sensing measurements including China 
Aerospace Science and Technology’s CHEOS, 
the European Space Agency’s Copernicus, Japan 
Aerospace Exploration Agency (JAXA) and National 
Aeronautics and Space Administration’s (NASA) Aura 
(ECMWF, 2022; NASA, 2023). Satellite instruments 
that monitor PM2.5 provide aerosol optical depth 
(AOD) values, which are atmospheric column density 
measurements (i.e. all aerosols observed in a column 
of air reaching from the earth’s surface to the upper 
atmosphere) rather than ground-level concentrations. 

In order to estimate PM2.5 mass concentrations 
from column measurements, AOD values need 
to be combined with other data sources within a 
statistical model framework to derive the ground-level 
concentrations1. Such conversions require input from 
multiple data sources such as CTMs, meteorological 
models, reference-grade monitors and land-use 
data. Furthermore, operationalizing these different 
data sources usually requires significant computing 
resources and expertise in running such models. A few 
limitations of satellite-derived estimates include their 
lack of coverage in the presence of clouds and, for 
some satellites, AOD values are retrieved only when the 
satellite passes overhead, typically once per day, which 
may not capture diurnal variability at each location.
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3.2 Air quality model estimates 

3.2.1 Land-use regression models

In their simplest form, LUR models are statistical 
formulae that map the relationship between ground-
level measurements (e.g. quantified by reference 
monitors, passive samplers or LCS) and the type of land 
that surrounds those measurements (e.g. roadways, 
industrial facilities, agricultural lands, rural forests). 
These land-use data are typically sourced from GIS data, 
but the cost and lack of availability of these data in some 
countries makes the use of publicly available satellite 
imagery to derive land-use data a more viable option 
(NASA, 2023). While LUR models have traditionally been 
developed from measurements collected at fixed sites, 
there has been a recent surge in models being developed 
from air pollution measurements collected via mobile 
platforms (e.g. on foot, bicycles, electric vehicles). This 
shift in the medium used to monitor air pollution data 
has also expanded the type of air pollutants that can be 
studied. For example, historical LUR models have been 
developed for PM10, PM2.5 and NO2, while more recent 
models have examined additional pollutants such as 
black carbon, UFP, polycyclic aromatic hydrocarbons, 
VOC and particulate components (Jedynska et al., 2014; 
Li et al., 2022; Robinson et al., 2019). 

LUR models are commonly used to derive air pollution 
exposure maps that offer detailed spatial variations 
in air pollutant concentrations. While these models 
are inherently temporally static, they allow users to 
estimate concentrations where there are no measured 
data. It is for this reason that these models have been 

commonly used in epidemiological studies that aim to 
understand the relationship between health impacts 
and exposure to air pollution. LUR models have 
been developed over a wide range of spatial scales 
(from 10 m to 10 km) with models being developed 
for neighbourhoods (Patton et al., 2015), cities and 
continents (Coker et al., 2021; de Hoogh et al., 2018; 
Hystad et al., 2011) and globally (Larkin et al., 2017). 
When developing regional or global LUR models, 
common input data are satellite-based air pollution 
estimates that allow users to account for country-
specific differences in their baseline exposure and 
generally improve the model’s performance. However, 
there are special challenges for continental and global 
spatial scales, as the model has to accurately represent 
exposures for a large geographic area yet be quality 
assured for the specific countries throughout that 
area. The spatial scale of the final model is a result of 
the density of the measurements (i.e. the denser the 
measurement network, the finer spatial variability that 
the model can map), the spatial heterogeneity of the 
pollutant (e.g. NO2 may have more near-road variations 
while PM2.5 may have more urban-scale variability) and 
the spatial resolution of the predictor variables (e.g. 
land-use variables from GIS data may be available 
every 10 m while satellite imagery provides 30-m 
spatial resolution) used in the model’s development. 
For a country that has non-existent or is developing air 
quality infrastructure, it may be more accessible to start 
air quality modelling with LUR models.

Box 5. Example of remote sensing satellite used in global applications
Recently deployed satellites continue to advance our global exposure assessment through the 
availability of air pollution column densities at an even finer spatial resolution. For example, while 
the Ozone Monitoring Instrument (OMI) NO2 resolution was 0.25° (13 km x 24 km), the TROPOMI 
(TROPOspheric Monitoring Instrument), which was launched in 2018, can provided NO2 column 
densities at a 0.125° resolution (3 km x 7 km). Similarly, the Geostationary Environment Monitoring 
Spectrometer (GEMS) satellite-based instrument improves upon OMI spatial resolution with total 
O3 column densities being recorded at a 0.125° resolution (Xue et al., 2020). Novel approaches to 
converting the satellite measurements into ground-level air pollution concentrations are being 
explored with multiple machine learning algorithms within an ensemble-based model. These 
machine learning and data fusion methods will be covered in more detail in subsequent sections.
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As with any other regression model, there lies a 
significant risk of ignoring confounding variables. For 
example, if a LUR model included predictor variables 
such as truck volumes and proximity to an industrial 
facility it is possible that the industry’s truck emissions 
as well as its stack emissions may be contributing 
to the air pollution. Additionally, as these empirical 
models ignore processes such as long-range transport 

and transformation of secondary pollutants, it is 
more challenging to develop a LUR that can be used 
to explore future scenarios of emission reductions. 
For this application, CTMs are more commonly used 
although they do not yet provide the same high 
spatial resolution of air pollutant concentrations as 
LUR models. More details on CTMs will be explored in 
section 3.2.3.

Box 6. Example of land-use regression model used in a global application 
A global NO2 LUR model was developed from 2005 to 2019 with a spatial resolution of 50 x 50 m2 
and daily, monthly and annual temporal resolutions (Larkin et al., 2022). The spatial-temporal 
model includes variables such as major roads, built environment, population density, temperature 
and satellite-based air pollution data. Across all regions, major road density and satellite-based 
estimates of NO2 were consistently the strongest predictors. Of the 8250 reference-grade monitors 
used to calibrate the global model, approximately 2.3% of monitors were located in Oceania, South 
America and Africa. Anenberg et al., 2017 expanded the temporal coverage available for a global 
LUR model from 1990 to 2019 and showed that 1.85 million paediatric asthma incidences were 
attributable to NO2 exposure (Fig. 4).

Fig. 4. Annual average NO2 concentrations from 1990 to 2019

Source: Anenberg, S et al. 2022. (Long-term trends In urban NO2 concentrations and associated paediatric asthma incidence: estimates from global datasets.)
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3.2.2 Dispersion models

Atmospheric dispersion models describe the turbulent 
diffusion processes in the atmosphere. These models 
estimate, at the local scale, ground-level air pollution 
concentrations by using emission inventories, 
topographical and meteorological data and land cover 
characteristics (often with building characteristics) (Turner 
et al., 1970). While dispersion models can account for, 
as an example, a simple O3 chemistry scheme, these 
models do not incorporate complex chemical reactions 
or transformations but rather estimate the short-scale 
dispersion of pollutant plumes for passive tracer gases 
and particles (US EPA, 2023c). It should also be noted 
that while dispersion models are well suited to study the 
movement of a plume from a concentrated source, they 
are less suited to understand the pollution from many 
dispersed sources. Air dispersion models are also used by 
public safety responders and emergency management 
personnel for emergency planning for plumes of pollution 
(such as accidental chemical releases, wildfire emissions) 
(Moussiopoulos et al., 1996). 

Dispersion models can range from a simple box model 
to complex fluid dynamics models. The suitability of 
the model for a given approach varies depending on the 
complexity of the environment and concentration of 
pollutants being assessed (Holmes and Morawska, 2006). 
Generally, dispersion model estimates are considered 
to be in good agreement with the measured values 
when the predicted concentrations are within a factor 
of two of the observed concentration, although some 
approaches use pollutant-specific thresholds and/or 
methods. While these models require less computational 
resources and technical expertise than CTMs, they tend 
to be less accurate for estimating secondary pollutants 
that are the result of complex chemical reactions and 
pollutant transformations (see section 3.2.3 for further 
information on CTMs). For a country that has limited 
but foundational air quality infrastructure, dispersion 
models can be useful to complement their air quality 
management system.

Box 7. Example of dispersion models used in regional applications
An example of a dispersion model commonly used to identify areas of non-compliance and 
associated sources is AERMOD. This model predicts the dispersion of pollutant plumes using 
Gaussian dynamics. Typical inputs for this dispersion model include terrain, processed 
meteorological data, industrial stack specifications (e.g. height, diameter, exit velocity) and 
pollutant emission rates for each stack, area source (e.g. ponds, holding facilities) or line source 
(vehicles). AERMOD also allows users to customize the density and height of receptors (e.g. 2 m 
above ground level) for which air pollutant estimates are required. In North America, industries 
seeking environmental approval certificates are required to estimate the cumulative air pollutant 
concentrations at ground level (US EPA, 2023d). However, in some countries, although air pollution 
emission permits require the application of dispersion models, the laws are not precise regarding 
the specific technical rules or guidelines they must comply with. For example, dispersion model 
estimates for new emission sources that do not account for background concentrations would 
be lower and more likely to meet the air quality standard than model estimates that include 
background concentrations (i.e. the cumulative air pollutant concentration).

Another dispersion model which is slightly more sophisticated than AERMOD and is commonly 
used in scenario analysis for policy-makers is CALPUFF. CALPUFF is a non-steady-state Gaussian 
puff model that incorporates some chemical reactions (US EPA, 2012). In contrast to AERMOD which 
is used for near-field applications, CALPUFF is generally employed for long-range applications such 
as the mapping of transboundary pollution within North America. ADMS-urban and SIRANE models 
are also commonly used in Europe to simulate air pollutant concentrations at a fine spatial scale 
(5 to 10 m) and are specifically adapted to evaluate the contribution of road traffic at the city level 
(Nguyen et al., 2018). 
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3.2.3 Chemical transport models

2 Weather Research and Forecasting (WRF) is a mesoscale meteorological model by the National Center for Atmospheric Research and the National 
Oceanic and Atmospheric Administration, United States of America.

3 Examples of global meteorological models include the Goddard Earth Observing System (GEOS) model developed by NASA’s Global Modelling and 
Assimilation Office; the Integrated Forecasting System (IFS) model developed by the European Centre for Medium-Range Weather Forecasts (ECMWF); 
and the Global Forecast System (GFS) model developed by the National Centers for Environmental Prediction, United States of America.

4 Examples of global CTMs include GEOS-Chem, MOZART and LMDz-INCA. 
5 Examples of regional CTMs include WRF-Chem, CHIMERE, CMAQ, CAMx, LOTOS-EUROS and EMEP. 
6 Examples of regional CTMs that can operate at the global and hemispheric scale are EMEP and CHIMERE respectively.

A CTM is a complex numerical approximation method, 
which uses emission inventories of primary pollutants from 
multiple sectors (e.g. industrial, agricultural, residential, 
traffic emissions) and meteorological data, embedding 
complex processes (i.e. wet and dry deposition, 
dispersion, mixing, aerosol formation, chemical 
reactions) to estimate air pollutant concentrations in 
the atmosphere (Byun and Schere, 2006). Although all 
CTMs require meteorological data, these data can come 
from mesoscale2 or global meteorological models3 which 
deliver forecasts (every 6 or 12 hours at resolutions 
varying from 0.1° to 1°) and robust re-analyses. 

The main advantages of CTMs include their ability to 
represent fundamental processes, test policy scenarios 
and forecast air quality a few days in advance. While 
they allow users to estimate air pollution over a 
wide geographic and temporal domain, they require 
significant expertise and computing infrastructure to 
use them properly (including, for example, to prepare 
and run emission and meteorological models and then 
analyse the results). Like all models, CTM-estimated 
concentrations are heavily dependent on the quality 
of the input data (i.e. emissions inventories, ground 
measurements) but these models can also be biased by 
the ability of the model’s chemical reaction equations to 
accurately represent real-world atmospheric chemistry. 

It is also important to evaluate the model with respect to 
observed measurements so as to reduce model biases. 
While traditional CTM air pollution estimates had low 
spatial resolution, many downscaling approaches now 
exist and can be applied to produce a gridded scale of 
100 m or even 50 m in urban environments (Denby et al., 
2020; Kim et al., 2018). For countries that have a well-
developed air quality infrastructure in place, CTMs can be 
useful to address questions that the existing air quality 
management system and models do not.

Global4 and regional5 CTMs can estimate concentrations 
of multiple atmospheric pollutants such as particulate 
matter, aerosols, O3, NO2, ammonia (NH3), as well as 
provide the composition of major components of 
particles such as organic matter, elemental carbon, 
sulfate, nitrate and ammonium. While global CTMs can 
estimate concentrations at a spatial resolution of 1.9° × 
2.5°, regional models output data typically at resolutions 
ranging from 1 to 25 km. However, some regional CTMs 
can also operate at global and hemispheric scales.6

The Copernicus Atmosphere Monitoring Service (CAMS) 
platform also offers an ensemble of products (e.g. 
forecast, re-analyses, source attribution services) for air 
pollution management and decision-making support 
across the globe (ECMWF, 2022). 

For additional information on national and regional CTMs refer to the Annex.

Box 8. Example of chemical transport model used in global applications
An example of a CTM that has been used by WHO to estimate global PM2.5 levels is GEOS-Chem 
(Shaddick, Thomas, Amini et al., 2018). GEOS-Chem is a three-dimensional model that uses 
meteorological data from the NASA GEOS to predict atmospheric chemistry across the globe 
Fig. 5. GEOS-Chem can predict multiple pollutants including PM2.5, NO2 and O3 at approximately 12-km 
resolution. Since GEOS-Chem simulates pollutant concentrations at different vertical heights within 
the troposphere, satellite column density data can be calibrated to ground-level concentrations using 
scaling factors that connect GEOS-Chem column density data with ground-level measurements from 
reference-grade monitors. The latest version of this model can provide hourly estimates of total PM2.5 
mass concentration as well as mass concentrations of several PM2.5 components (e.g. sulfate, nitrate, 
ammonium and organic carbon) (Martin et al., 2022).  
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3.2.4 Machine learning models

7 Examples of techniques used include random forests, neural networks, lasso regression, support vector machines and gradient boosting (Li et al., 2020; 
Lu et al., 2020).

While each measurement and modelling method 
has its respective strengths and weaknesses, it is not 
uncommon to combine multiple methods to estimate 
ambient air pollution concentrations. The driving factor 
for which methods are chosen is usually the availability 
of data and technical resources. Ultimately, the optimal 
method used for estimating air pollution is the method 
that allows users to achieve their purpose with minimal 
cost and resources. 

Advances in machine learning algorithms coupled 
with the availability of open-source data has fostered 

the development of machine learning based land-
use models. Whereas earlier LUR models were based 
on linear regression approaches, a recent trend in 
LUR modelling is the inclusion of machine learning 
approaches such as Bayesian models. Several studies 
have shown varying levels of improvement in model 
performance with these machine learning techniques 
(Ren et al., 2020).7 The input data for machine learning 
models depends on the application and can include 
meteorological data, land-use data, emissions 
estimates, satellite observations and CTM output. 

Box 9. Example of machine learning models used in global applications
An example of an ensemble-based model that was developed to estimate global and national NO2 
concentrations at a spatial resolution of 25 m used multiple machine learning methods and input 
data such as TROPOMI satellite values, meteorological data, land-use data and CTM predictions (Lu 
et al., 2020). Fig. 6 shows the spatial variability predicted by the global and national models for four 
countries: China, Germany, Spain and United States of America. The observed improvements in the 
accuracy and spatial resolution of global air pollution estimates for each country highlights how 
machine learning approaches can be leveraged to use global data sources to identify air pollution 
exposures at the national level in LMIC.

Fig. 5 Map of global PM2.5 estimates for 2019

Source: Authors based on WHO Data Integration Model for Air Quality

ANNUAL MEAN 
PM2.5 (μg/m3)

>35

20

<5



Overview of methods to assess population 
exposure to ambient air pollution21

Fig. 6. Spatial predictions of NO2 (μg/m3) for the four countries using extreme gradient boosting (XGB) 

Note: For each country predictions are made using the global and national models separately for daytime and night-time. The United States’ tile covers a 
Massachusetts city called Lynn (42.47° N, 70.94° W). The tile in China covers an inner-Mongolian city called Hulunbuir (49.23° N, 119.76° E). Germany’s tile covers a city 
in the north of Schleswig-Holstein called Flensburg (54.79° N, 9.44° E). Spain’s tile covers a city in the region of Asturias called Aviles (43.55° N, 5.92° W).

Source: Lu et al., 2020 (Evaluation of different methods and data sources to optimise modelling of NO2 at a global scale).
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Box 10. Example of a geostatistical data fusion model used in global applications
A global study that explored the integration of satellite data from Copernicus Atmosphere 
Monitoring Service Re-Analysis of Atmospheric Composition (CAMSRA) into DIMAQ to estimate 
PM2.5 levels (Shaddick et al., 2021) is presented. CAMSRA provides 3-hour averages of PM2.5 
estimates from 2003 to 2016 at a spatial resolution of 10 km x 10 km in some regions and 70 km 
x 70 km in other regions. When CAMSRA PM2.5 estimates were compared with ground-level 
measurements for 2016, poor spatial agreement and biases can be seen in some regions more 
than others (Fig. 7a).  In contrast, significant reduction in biases and better spatial agreement 
were reported when CAMSRA was integrated into the DIMAQ framework (Fig. 7b). Specifically, 
we see increases in the R2 (i.e. the spatial agreement between observed and estimated PM2.5 
levels via a linear regression) and decreases in the root mean square error (RMSE) (i.e. the bias 
between observed and estimated PM2.5 levels). For example, for East/South-East Asia using 
CAMSRA and DIMAQ instead of CAMSRA alone increased the R2 from 0.42 to 0.90 and decreased 
the RMSE from 55.65 ug/m3 to 6.44 ug/m3. Given the paucity of data in sub-Saharan Africa and to 
some extent in Asia and the high population densities in these countries, improving the model 
estimates outputted from DIMAQ can have significant influences on air pollution policies. The 
coupling of CAMSRA and DIMAQ also opens the possibility of apportioning particulate matter 
into specific emission sources since CAMSRA data include total PM2.5 mass concentrations 
as well as their components (i.e. dust, organic matter, black carbon, sea salt and sulfates). 
Furthermore, the higher temporal resolution of CAMSRA data can expand the availability of 
PM2.5 estimates to multiple temporal scales beyond the current annual averages.  

3.2.5 Geostatistical data fusion models

Data fusion models can include a combination of 
measurements and air quality models, as well merging 
of multiple air quality models. Data fusion generally aims 
to take advantage of the strengths of measurements 
(good accuracy but limited to the location of the 
measurement) and models (good spatial and temporal 
coverage, but biased) by combining information from 
these different sources.  

As previously mentioned, WHO coordinated – through 
a global collaboration – the development of the DIMAQ 
to provide global estimates for air pollution-related SDG 

indicators as well as to facilitate global health burden 
assessments (Brauer et al., 2016). While country-specific 
ground-level monitors are preferred for health risk 
assessments, their limited availability in many countries 
makes it challenging to estimate the global burden of 
disease. It is for this reason that DIMAQ, a hybrid model 
that integrates multiple air quality monitoring methods, 
was developed. Specifically, DIMAQ combines data from 
ground-level monitors with an output from atmospheric 
CTM and satellite-derived PM2.5 estimates within a 
machine learning framework, specifically, Bayesian 
hierarchical modelling. 
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Fig. 7. Comparison between the annual average of PM2.5 estimated by a) CAMS multi-annual global re-
analysis of atmospheric composition and ground measurements, and b) DIMAQ while using the CAMS multi-
annual global re-analysis of atmospheric composition and ground measurements, by region, for 2016 

a)

b)

Note: Red lines indicate a one-to-one relationship.

Source: Shaddick et al., 2021 (Global air quality: an inter-disciplinary approach to exposure assessment for burden of disease analyses).
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A geostatistical data fusion model that combined 
satellite NO2 measurements retrieved from the OMI at 
a grid cell size of 13 km × 24 km and GEOS-Chem CTM 
within a LUR modelling framework was developed to 
derive global estimates of NO2. The NO2 resolution was 
approximately 10 km x 10 km after integrating the CTM 
output, and the spatial resolution further improved to 
100 m x 100 m after the land-use data were included 
(Larkin et al., 2017). As satellite data can contain missing 
values which may be due to the presence of cloud cover 
or instrument issues, users can acquire NO2 column 
simulations from CAMS when the percentage of missing 
data is significant. This dataset is a re-analysis of NO2 
satellite estimates through the integration of multiple 
NO2 satellite instruments within the ECMWF IFS, which 
includes atmospheric composition modelling. 

Another data fusion model combined LCS and satellite 
measurements within a statistical framework. In a 
cross-continental study in sub-Sahara Africa and 
the United States of America, population exposures 
from the fusion of satellite data and LCS monitors 
(Malings et al., 2020) were examined. In this study 
AOD values from MODIS satellites were calibrated with 
LCS (i.e. PurpleAir and Alphasense) in a simple linear 
regression to estimate surface PM2.5 concentrations 
in the Democratic Republic of the Congo, Malawi 
and Rwanda. The sub-Sahara African countries had 
eight LCS and zero reference-grade monitors. These 
satellite-based ground-level estimates were compared 
with estimates in Pittsburgh, United States, that 

were derived from 62 LCS and five reference-grade 
monitors. When comparing the ground measurements 
with the satellite estimates, it was observed that a 
high density of measurements (from reference-grade 
monitors or LCS) was more beneficial than the satellite-
based estimates for discerning spatial patterns in 
both locations. However, in Rwanda, where ground 
monitoring is sparse, satellite data combined with a few 
LCS monitors provided comparable information about 
the air pollution spatial distribution as the satellite data 
estimated for Pittsburgh. 

In addition to developing data fusion models through 
the combination of measurements and air quality 
models, data fusion models have also been developed 
from merging multiple air quality models (DeLang et al., 
2021). Yim et al. (2015) used the dynamical downscaling 
approach to evaluate the air quality and health impacts 
of aviation emissions at global, regional and local level. 
The study first used the global CTM (GEOS-Chem) to 
resolve the global scale, then applied CMAQ to further 
resolve the air quality to a regional level focusing 
on North America, Europe and Asia. The model was 
subsequently downscaled using AERMOD to provide air 
quality at national level to facilitate the evaluation of air 
quality at more than 1000 airports across the globe. The 
combined results of the three models were also used 
to evaluate health impacts at the local level. This kind 
of dynamical downscaling approach is one example 
of how data fusion models can address the grid size 
limitation of an individual model.
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3.3 Summary of air pollution measurement and modelling methods 

There are many ways that we can measure and model 
air pollution levels for use in epidemiological studies 
and health impact assessments. A comprehensive list of 
the advantages and disadvantages associated with each 

monitoring method is detailed in Tables 3 and 4. The 
methods are presented in order of complexity with the 
measurements and models with the lowest technology 
requirements appearing first.

Table 3. Advantages and disadvantages associated with each air pollution measurement method 

Measurement Advantages Disadvantages

Passive diffusion samplers No power requirement; low cost; portable Low time resolution; some samplers require a qualified 
laboratory to analyse the sample; corrupted/damaged 
samplers are unusable; in highly polluted environments, 
the samplers can be become saturated and unusable; 
easily stolen or vandalized if exposed to the public; 
cannot measure short-term pollutant levels or non-
compliance with standards

Low-cost sensors Low cost; portable; low power 
requirements; medium to high time 
resolution; a network of low-cost sensors 
can give an understanding of pollutant 
spatial distributions and identify hotspots

Low sensitivity; low precision; interference from other 
pollutants; weather extremes (e.g. high humidity and low 
temperatures) can lead to greater uncertainty in data; 
requires knowledge of statistics for big data processing; 
prone to baseline drift over time from wear and tear 
or contamination; calibration and validation with a 
reference monitor at sampling location is recommended; 
lifespan of the sensor ranges from 1 to 5 years; no 
standardization for instrument siting; easily stolen or 
vandalized if exposed to the public 

Personal direct reading 
instruments

High time resolution; medium accuracy; 
portable; enables the collection of personal 
exposure data; some are battery powered

Medium cost; requires periodic maintenance by 
competent technician; some instruments may have 
limited data logging capabilities

Reference-grade monitors High sensitivity; high accuracy; high time 
resolution lifespan of monitor can be more 
than 10 years; historical data available for 
long time period

High capital cost; complex maintenance and calibration 
that usually requires a qualified technician; not portable; 
narrow spatial coverage (i.e. monitors air pollution for a 
specific location); high spatial scale possible with denser 
network of monitors; continuous energy requirement; 
repairs usually require shipping to HIC

Remote sensing satellites Openly available to public; wide spatial 
coverage; historical data available for a 
long time period

Measurements are not directly outputted as air pollution 
concentrations, and they generally require modelling/
calibration with chemical transport models; low time 
resolution (days to weeks); moderate spatial resolution 
(1 km to 10 km)
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Table 4. Advantages and disadvantages associated with each air pollution modelling method

Model Advantages Disadvantages

Land-use regression models Low computing resources; narrow to wide 
spatial coverage available; medium to high 
spatial resolution available depending on 
the spatial resolution of the input data  
(100 m to 1 km)

Require access to land-use data from GIS or satellite 
imagery; require knowledge of statistical principles; 
exposures are temporally static (i.e. represent the 
time-period that the air pollution was sampled); require 
access to ground measurements for model calibration

Dispersion models Low to medium temporal resolution 
(hourly to annual); medium to high spatial 
resolution (100 m to 1 km) 

Cover a narrow spatial domain; low to medium 
computing resources; require moderate training/
experience; atmospheric chemistry is not included 
in air pollution estimates; require detailed emissions 
inventory; not suitable for widely dispersed sources

Chemical transport models Cover a wide spatial domain; medium 
temporal resolution (hours to days); 
model complex atmospheric physical and 
chemical processes including interactions 
among air pollutants; provide multiple 
pollutant concentrations per simulation 
output; facilitate forecasting of air 
pollution; facilitate source apportionment; 
enable evaluation of air pollution 
interventions/what-if scenarios     

High computing resources; model operation requires 
extensive training/experience; low spatial resolution  
(1 km to 100 km); require detailed emissions model 
input; require meteorological model input

Machine learning models Narrow to wide spatial coverage available; 
medium to high spatial resolution available 
depending on the spatial resolution of 
the input data; many machine learning 
algorithms are open-sourced

Low to medium computing resources; require moderate 
training/experience; require access to several input 
datasets, require ground measurements for model 
calibration

Geostatistical data fusion 
models

Cover a wide spatial domain; model 
complex atmospheric aerosol interactions; 
facilitate forecasting of air pollution; enable 
evaluation of air pollution interventions/
what-if scenarios

High computing resources required; model operation 
requires extensive training/experience; require detailed 
emissions model input; require meteorological model 
input; require access to ground measurements for model 
calibration
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Chapter 4 Moving beyond population-weighted air pollution 
exposures to exposure disparities

According to the WHO 2022 air quality database, of 
the 6700 human settlements located across the globe 
with PM10 and/or PM2.5 ground-level data; fewer than 
60 settlements are located in Africa (WHO, 2022b). 
Countries with a smaller number of reference-grade 
monitors available for quantifying air pollution 
exposure tended to report higher PM2.5 levels, which 
further exacerbates this exposure disparity (Fig. 8). In 
addition, countries in sub-Sahara Africa and South-
East Asia that recorded elevated ambient levels also 
have higher population sizes which leads to a greater 
burden of disease from air pollution (Shaddick et al., 
2020). Furthermore, as LMIC have a lower capacity 
to monitor air pollution and less accessibility to 
protective measures against NCDs, it is important to 
consider how sociodemographic and socioeconomic 
factors can contribute to environmental inequities.   

In 2019, WHO released a comprehensive report which 
documented that disadvantaged groups within Europe 
which had limited access to health promoting amenities/
services (e.g. portable water, sanitation services) were 
also exposed to harmful environmental risk factors 
(e.g. air and noise pollution, lack of green spaces) (WHO 
Regional Office for Europe, 2019). Additional studies are 
revealing similar findings – that individuals of different 
socioeconomic status, ethnicities, gender or age are also 
exposed to disparate levels of air pollution (Fairburn 
et al., 2019; Hajat et al., 2015), extreme weather events 
(EEA, 2019b) and many more climate change impacts. 

Source: WHO, 2022b WHO (air quality database). 

Fig. 8. PM10, PM2.5 and NO2 annual means and data accessibility, by region and settlement size, the latest 
year in the period 2010—2019
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4.1 Data and methods commonly used for assessing exposure disparities

When evaluating air pollution exposure inequalities, 
it is important to have air pollution concentrations as 
well as sociodemographic and socioeconomic data 
at similar spatial scales. Examples of socioeconomic 
and sociodemographic data include ethnicity, gender, 
relationship status, income, education attainment, 
employment status and household occupant density, 
to name a few. Most of these data can be accessed from 
national census statistics. However, the most beneficial 
geographic domain (e.g. census division or postal 
code) varies according to the objective of the study. For 
example, when examining intra-urban inequalities it 
would be beneficial to use the highest spatial resolution 
available, such as postal code level data. 

One of the greatest barriers to assessing 
socioenvironmental inequalities is the limited 
availability of socioeconomic and sociodemographic 
data in LMIC. Given these data constraints, it is 
worth considering using satellite imagery to develop 
proxy indicators. Some studies have shown that the 
socioeconomic status of a neighbourhood can be 
predicted when a machine learning model combines 
satellite imagery and census-level socioeconomic 
status indicators (Abitbol and Karsai, 2020). Another 
study in the United Kingdom illustrated the potential 
of complementing survey data with satellite data to 
estimate social, environmental and health indicators 
(Suel et al., 2019). While applying such models to 
other countries may be less accurate than the country 

it was designed for, the integration of local survey or 
administrative data can offer LMIC a starting point for 
assessing their exposure disparities.

A 2018 report from the European Environment Agency 
explored unequal exposures to air pollution at different 
spatial scales (EEA, 2019b). Table 5 displays the 
potential socioeconomic indicators that were available 
at different spatial scales in the European assessment. 
For regional evaluation of environmental inequities, 
the authors used gross domestic product per capita 
and PM2.5 exposures, and they observed that the most 
disadvantaged regions had 30% higher particulate 
matter exposures (Fig. 9). In addition, the regions with 
the lowest proportion of persons with higher education 
were also exposed to higher levels of particulate 
matter. A similar observation was reported across 
the three most densely populated Canadian cities; 
neighbourhoods with more undesirable environmental 
factors (i.e. high NO2 levels, low walkability and low 
greenness) also had high material deprivation, while 
areas with low deprivation exhibited more desirable 
environmental factors (Doiron et al., 2020). A meta-
analysis of environmental inequality literature from 
Africa, Asia, New Zealand and North America showed 
that low socioeconomic status communities were 
commonly exposed to higher air pollution (Hajat et al., 
2015). Given the presence of environmental inequities, 
it is possible that health inequities could exist due to 
environmental factors, socioeconomic factors, or both.

Table 5. Indicators of social vulnerability used in the pan-European assessment of exposure to air 
pollution, noise and extreme temperatures

SPATIAL UNIT

 CITIES NATIONAL REGIONAL

AGE Percentage of young children 
(under 5 years old) in population

Percentage of young children (under 5 years 
old) in population

Percentage of elderly people (75 
years old or older) in population

Percentage of elderly people (75 years old or 
older) in population

SOCIOECONOMIC 
STATUS

Household income (per capita after social 
transfers, purchasing power standard)

Per capita gross domestic 
product, purchasing power 
standard

Unemployment rate (percentage 
of economically active 
population)

Long-term unemployment rate (12 months 
or more; percentage of economically active 
population)

Percentage of people (aged 25 to 
64) without higher education

Percentage of people (aged 25 to 64) without 
higher education

Source: EEA, 2019b (Unequal exposure and unequal impacts: social vulnerability to air pollution, noise and extreme temperatures in Europe).
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Fig. 9. Differences in exposure to PM2.5 and PM10 (μg/m3) among regions in Europe, classified according 
to the proportion of people with higher education in the population (left) and GDP per capita (right), 
2013–2014 

 

Source: EEA, 2019b (Unequal exposure and unequal impacts: social vulnerability to air pollution, noise and extreme temperatures in Europe).

Given the strong correlation between air pollution 
levels and socioeconomic and sociodemographic 
factors, health studies may need to employ dimension 
reduction strategies to reduce the negative impact 
of highly correlated input data on the model output. 
See the Annex for more technical information about 
dimension reduction methods. An example of this can 
be seen in a United States study where researchers used 
a hierarchical clustering approach to combine multiple 
air pollution exposures (NO2 and PM2.5) and several 
socioeconomic factors to isolate the health impact of 
these multiple risk factors (Coker et al., 2016). It was 
observed that pregnant women with the highest risks for 
low-term birth weight tended to live in neighbourhoods 
with more disadvantaged characteristics (i.e. below 
median income, non-white) and they were also exposed 
to the highest air pollution. Lack of standardization 
in the measurement of sociodemographic and 
socioeconomic status and the subsequent evaluation of 
the potential confounding role across studies could lead 
to disparities in the health effect estimates observed in 
epidemiological studies (Klompmaker et al., 2021).

Another dimension to these environmental inequities 
is that disadvantaged populations also tend to be 
more vulnerable to adverse health outcomes and 
have less access to protective measures against 
these environmental risks. In Rome it was observed 
that even though individuals with high income 
levels were exposed to higher levels of PM10, the 
mortality attributed to air pollution was greater 
for the individuals with lower economic positions 
as these individuals had a greater susceptibility to 
chronic health conditions such as diabetes mellitus, 
hypertension, heart failure and COPD (Forastiere et al., 
2007). The intersection of these multiple risk factors 
highlights the presence of health inequities and the 
need for urban planning that focuses on both air 
pollution, and sociodemographic and socioeconomic 
factors when developing public health policies.
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Chapter 5 Conclusion

5.1 The way forward

Epidemiological studies and health impact assessments 
that have assessed the effect of long-term health impact 
of air pollution have commonly used reference-grade 
monitors, LUR models, satellite instruments, dispersion 
models and/or geostatistical data fusion models to 
estimate population exposures (Hoek, 2017; Jerrett et al., 
2005). For the development of the WHO global burden 
of disease attributed to air pollution, PM2.5 estimates 
are derived from a geostatistical data fusion model that 
combines reference-grade monitors, satellite information 
and CTMs. In this report, we present several methods that 
can be used to improve assessments of the health impacts 
of a population’s exposure to air pollution. These air 
quality monitoring methods fall into two main categories: 

•	 measurements from technologies such as passive 
diffusion samplers, reference monitors and 
satellites; and 

•	 model estimates from LUR, chemical transport, 
machine learning and geostatistical data fusion 
models. 

Of all the methods highlighted, reference-grade monitors 
are a critical part of a comprehensive air quality 
management programme. In addition to their accuracy, 
they enable the monitoring of long-term air pollution 
exposures which are pivotal for health studies, and they 
are also critical for the objective evaluation of compliance 
with standards as well as the effectiveness of air pollution 
reduction policies. Countries that do not have reference-
grade monitors are showing increasing interest in LCS. 
However, the evidence suggests that LCS have the 
capability to show qualitative changes in spatial variability 
and short-term temporal variability, but there is limited 

evidence that these sensors can independently provide 
reliable annual concentrations in the long term (Peltier et 
al., 2020). For this reason, reference-grade monitors are 
the preferred method for assessing baseline levels and 
tracking of long-term progress in air quality, and nations 
should strive to have at least one reference monitor in an 
urban centre and one in a rural area. 

While it is important to start somewhere, nations should 
balance their national priorities with available resources 
and employ a mixture of approaches to best address 
their air quality problems. Pivotal to the success of any 
air quality management programme is the awareness 
of the advantages and disadvantages of each approach: 
cost, technical complexity, outputs and the recognition 
that some methods require the prior presence of other 
measurement methods to be useful. For example, 
modelling approaches require local measurements to 
develop accurate model estimates. Air quality decision-
makers can use the methods that have been summarized 
in this document to identify the air quality monitoring 
method that is best suited to address their issues, while 
keeping in mind that no single method can achieve all 
their objectives. Since reference monitors are well suited 
to track long-term changes in air quality, despite their high 
purchase and operating costs, they should be viewed as 
the first step in an air quality monitoring programme. That 
being said, a combination of models and measurements 
is usually needed to track the long-term progress in air 
pollution for the entire country’s geographic domain. 
Several scientists are currently developing hybrid models 
that can improve air pollution exposures for future 
health impact assessments; some of these advances are 
highlighted in the second part of the conclusion.

5.2 Areas for future improvements

Despite the increasing availability of methods to assess 
population exposure, associations between air pollution 
and health effects across epidemiological studies have 
not been consistent. The disparity in the direction or 
magnitude of health effect estimates in health studies 

may be due to differences in population exposure 
methods, exposure measurement errors, and sensitivity 
to adjustment for confounders (Gariazzo et al., 2021; 
Jerrett et al., 2017; Klompmaker et al., 2021).
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Methodological improvements to assess exposures 
to air pollution will be aimed at decreasing exposure 
measurement errors while increasing the temporal and 
spatial resolutions of the air quality concentrations. 
The rapid advances in satellite measurements with 
higher spatial and temporal resolution coupled with 
the integration of downscaling methods in CTMs have 
increased the spatial resolution of air pollution estimates 
to enable subnational exposure assessments (van 
Donkelaar et al., 2019). Enhancing the spatial resolution 
of air pollution estimates allows the integration of time-
activity profiles into the exposure estimates; this has 
revealed stronger associations between ambient air 
pollution and health outcomes in some studies (Ragettli 
et al., 2015, Setton et al., 2011). Furthermore, increasing 
the temporal resolution of air pollution estimates can 
enable the assessment of specific morbidities associated 
with short-term exposures such as higher risks of pre-
term birth with elevated air pollution exposures during 
the first trimester (He et al., 2022).

As satellite imagery becomes more accessible, the 
development of LUR models which use these images 
rather than GIS data to represent land-use practices 
will become more common. Another change in the 

landscape of LUR models involves the combining of 
satellite imagery and satellite estimates of air pollution 
to derive population exposures. This shift can reduce 
the barrier to access that is associated with GIS data and 
allow LMIC to develop national LUR models. However, it 
is important to acknowledge that fundamental to these 
model improvements is access to high-quality, reliable 
air quality measurements, from, for example, reference-
grade monitors, to calibrate and validate the models. 

The coupling of open access computing resources for 
satellite data analysis and machine learning algorithms 
creates potential opportunities for LMIC to develop 
baseline air pollution concentrations and population 
exposure estimates for local health impact assessments. 
Future population exposure assessments will likely 
involve combinations of geostatistical data fusion 
models and machine learning approaches as well as 
a greater density of local air quality measurements, 
preferably reference-grade monitors. In advancing the 
evidence of the health impacts attributed to air pollution, 
it is important to have accurate and long-term air quality 
data that cover the entire country, with more monitors 
being situated in densely populated areas, especially 
areas with vulnerable groups and exposure disparities.
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Annex: Technical specifications and/or operating principles for air 
quality measurements and models

Passive diffusion samplers

There are a few different types of passive samplers. 
Button or badge samplers are better for occupational 
exposure assessment where concentrations may be 
higher, so that enough material is collected on the small 
substrate to be detected via an analytical instrument. 
There are also larger passive samplers for collecting 
ambient pollution; it is helpful to co-locate these with 
concentration monitors to determine composition.

Low-cost sensors 

While gaseous pollutants can be monitored with LCS 
based on electrochemical, metal oxide semiconductor, 
photoionization detector or non-dispersive infrared 
technologies, particulate matter monitoring is achieved 
with optical particle counters or light-scattering 
based optical sensors (e.g. nephelometers). Given the 
suite of pollutants that are generally included when 
assessing the burden of disease from air pollution (i.e. 
particulate matter, NO2, O3, CO), this document focuses on 
electrochemical, metal oxide and optical-based sensors.

For optical-based LCS, the operating principle is similar 
to that reported for PDRIs that measure particulate 
matter. Briefly, particulate matter sensors can either 
measure the intensity of the light scattered by the 
particles or count the number and size of particles 
within the volume of air. In an electrochemical sensor, 
gaseous pollutants react with the sensor’s electrolyte, 
and the concentration of the air pollutant is determined 
by the magnitude of the chemical reaction which is 
proportional to the electrical signal outputted (e.g. 
electric current). For metal oxides, when a gas passes 
over their surface the resistance or conductivity 
of the metal surface changes, and the magnitude 
of this conductivity change is proportional to the 
concentration of gas adsorbed onto its surface. 

Since the raw data outputted from LCS are proxies 
for particle or gaseous concentrations (e.g. light 
absorption, electrical voltage/current or conductivity), 

these raw data require conversion factors or models 
to represent the data as air pollution mass or volume 
concentrations. An integral part of the accuracy of 
LCS monitors is the calibration of these sensors. The 
correction/conversion factors applied (for instance, 
for gaseous sensors) are often calibrations against 
“zero gas” or gas of varying concentrations. These 
calibrations and conversions are thus overlapping in 
many contexts. While some LCS have factory calibration 
settings which provide users with a simple conversion 
factor to derive air pollution concentrations, other 
monitors have a more complex data management 
system that provides an internal post-processing 
system to convert the raw data into concentration 
data. Since the operating conditions under which 
these conversion models were developed may be 
quite different from the environment that the LCS is 
deployed in, it is recommended that users develop 
conversion factors in an environment with similar 
conditions (e.g. temperature and relative humidity) 
to the environment that the monitor will be deployed 
(Spinelle, Kotsev et al., 2017). This can be accomplished 
by co-locating the LCS with a reference instrument for a 
few weeks. Another advantage of developing in-house 
conversion factors is that it allows users to detect when 
the sensor’s baseline is drifting or if there is an error 
in the conversion model. It is also beneficial to have 
multiple sensors deployed in tandem so as to be able to 
better detect any abnormalities in the sensor network. 
Furthermore, comparing data from multiple monitors 
over a few weeks is critical when assessing the 
reliability of these LCS monitors. Additional information 
on developing conversion factors and assessing 
the performance of LCS can sourced from the data 
quality objective of the European Air Quality Directive 
(EU, 2008) or the US EPA air sensor toolbox (US EPA, 
2023e). It is also important to highlight that companies 
offer this calibration service, but these services are 
subject to annual contracts for data management, 
which makes the cost of continuous and permanent 
calibration moderately expensive and thus reduces the 
accessibility of this technology to communities in LMIC.
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Personal direct reading 
instruments

Examples of PDRIs that measure PM10 and PM2.5 

are photometers which record optically based 
measurements of particulate matter (i.e. light 
scattered by the particles) and then convert it to mass 
concentrations. It is worth mentioning that gravimetric 
methods for quantifying personal exposure to particulate 
matter can be achieved through the deployment of 
encased polytetrafluoroethylene filters attached to an 
air pump, with or without a small, size-selective inlet 
(such as an impactor or cyclone), for 24 hours. Nitrogen 
dioxide levels (i.e. mixing ratios) can be measured using 
direct absorbance of the gas at a specific wavelength 
(i.e. 405 nm) while O3 levels can be recorded using 
the operating principle of ultraviolet absorbance. It is 
important to note that PDRIs being used for research 
purposes should be able to log data. While most of 
these instruments can record air pollution data every 
few seconds, the use of a lower time resolution (e.g. 
1 minute) is recommended so as to reduce the noise 
associated with these measurements. It should also 
be mentioned that these personal monitors should be 
corrected with a calibration factor that is derived from 
the slope of the reference instrument vs the personal 
monitor values during co-location of these instruments.

A few other commonly used standardized personal 
monitors that allow continuous monitoring of air 
pollutants at a high time resolution that are available 
include: micro-aethalometers for measuring black 
carbon; particle counters for recording UFP counts; and 
portable probes for monitoring CO2, CO, VOC, relative 
humidity and temperature. 

Reference-grade monitors

For high time resolution data, particulate matter 
is measured using tapered element oscillating 
microbalances or beta attenuation monitors which 
determine the mass density of particulate matter. 
PM10 and PM2.5 can also be recorded by photometers or 
nephelometers which use light-scattering principles 
to derive mass concentrations. It should be noted 
that photometers and nephelometers must convert 
the light-scattering intensity to mass concentration 
and this conversion step is influenced by particle size 
and chemical composition whereas beta attenuation 
monitors do not require this conversion step. Particulate 

matter collected at a lower time resolution can be 
measured by gravimetric analysis, i.e. weighing the mass 
of deposited particles on the filter over a 24-hour period. 
Other operating principles that are used to give high 
time resolution air pollution measurements include laser 
absorption spectroscopy or chemiluminescence reaction 
principles, which determine the volume concentration 
of NO2. Photometric principles are used for O3 monitors 
which employ ultraviolet absorption while CO monitors 
use infrared radiation absorption to determine volume 
concentration.

Land-use regression models

LUR models are derived from spatial and temporal 
predictor variables. Some examples of common 
spatial predictor variables are proximity to roadways, 
industries, city centre, green and blue spaces; proportion 
of area within a given circular buffer that contains 
open, commercial, industrial and residential areas. 
For temporal predictor variables, temperature, wind 
speed, wind direction and air pollution concentrations 
from a reference-grade monitoring station are useful 
for accounting for pollutant variability due to seasonal 
and day-to-day meteorological changes. It is worth 
mentioning that LUR models derived from mobile 
sampled air pollution tend to have a lower coefficient of 
determination, R2, (i.e. the squared correlation between 
estimated and measured concentrations) than models 
developed from fixed site measurements; however, the 
model estimates are still representative of the observed 
spatial variability.

Chemical transport models

An example of a global CTM is the Trace Model version 5 
(TM5) which provides estimates of atmospheric gases 
(e.g. O3, NOx, sulphur oxides), VOC, ammonia and PM2.5 
components (e.g. sulfates, nitrates), black carbon, 
organic carbon, sea salt and mineral dust. TM5 uses 
meteorological data from the ECMWF to output hourly 
air pollutant estimates at a spatial resolution of 1° × 1°. 
The TM5-FAst Scenario Screening Tool (TM5-FASST) is 
a reduced-form global source-receptor model that is 
based on TM5. This simplified version of the TM5 model 
uses inputs derived from annual pollutant emission 
data aggregated at national level which reduces the 
computing time but can still provide PM2.5 and O3 
concentrations in a receptor grid with 1° × 1° resolution. 
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The strength of this model lies in its ability to enable 
countries to examine different what-if policy scenarios 
or emission pathways and evaluate the impact on 
ecosystems and human health (Sampedro et al., 2020). 
TM5-FASST can also be used to complement source 
apportionment studies.

Along the same lines, the SHERPA Screening Tool 
developed by the Joint Research Centre is a CTM 
reduced-form source-receptor model that provides 
NO2, PM2.5 and O3 concentrations in a receptor grid with 
10 × 10 km resolution over Europe (Thunis et al., 2018). 
This model enables countries, regions and cities to 
examine different what-if policy scenarios or emission 
pathways and evaluate the impact on ecosystems 
and human health. Similar to FASST, SHERPA is useful 
to complement source apportionment studies. One 
application example is the quantification of the most 
important sources of emissions in 150 cities in Europe 
(Thunis et al., 2021).

A well-established regional CTM in Europe is the 
EMEP model which was developed more than three 
decades ago to support negotiations in relation to 
long-range transboundary air pollution within the 
United Nations Air Convention. More recently, the 
European Commission set up CAMS, which includes 
global and regional scale modelling. For the regional 
(European) Service, CAMS relies on an ensemble 
of 11 CTMs developed and operated by European 
teams at a resolution of 10 km for both forecast and 
past re-analyses. These models include CHIMERE 
(France), DEHM (Denmark), EMEP (Norway), EURAD-
IM (Germany), GEM-AQ (Poland), LOTOS-EUROS 
(Netherlands [Kingdom of the]), MATCH (Sweden), 
MINNI (Italy), MOCAGE (France), MONARCH (Spain) and 
SILAM (Finland). Such an extended list is illustrative of 
the diversity of modelling approaches available, even 
for operational purposes.

Alternative approaches use downscaling methodology 
built on classical Gaussian plume modelling and 
integrated into CTMs such as the EMEP model providing 
model physical parameterizations and emission 
data in such a way as to provide a consistent model 
description from regional to local scales. Unlike other 
urban-scale models, the resulting model called uEMEP 
(Denby et al., 2020) is intended not just to achieve local-
scale modelling for an individual city or area but to 
provide local-scale modelling over entire countries or 
continents, providing high-resolution modelling over 

large areas and allowing air quality assessment and 
exposure calculations at high resolution everywhere. 
Similar approaches are proposed with the MUNICH 
model (Kim et al., 2018) coupled with the Polair3D 
model and CHIMERE to account for emission variability 
to assess the exposure at local scale (Kim et al., 2018). 

At the regional scale, CMAQ was applied with a spatial 
resolution of 27 km to evaluate the impacts of sectoral 
emissions in China on air quality (including PM2.5 and 
O3), human health, crop production and economic costs 
(Gu et al., 2018). In another study, CMAQ was also used 
to assess the air quality and health impacts of domestic 
transboundary air pollution in China at a spatial 
resolution of 27 km (Gu and Yim, 2016).

Dimension reduction methods

One approach to account for the synergistic effect of 
multiple pollutants is to use a statistical regression 
model that contain multiple pollutants as predictor 
variables and an interaction term for each pair of 
pollutants. While this method may work well for 
uncorrelated pollutants, if two or more highly correlated 
pollutants are included in the model, the model can 
become unstable. Another option could be to conduct 
some degree of dimension reduction on the multiple 
pollutants prior to using the data as predictor variables 
for the regression model. Dimension reduction methods 
such as lasso regression, principal component analysis 
(Lee, Hong et al., 2020), k-means clustering (Keller et al., 
2017), factor analysis or hierarchical clustering allow 
highly correlated predictor variables to be grouped 
into one “cluster” or “factor”. One of the benefits of 
dimension reduction methods that are also used 
for source apportionment is that these techniques 
can provide useful information about the sources 
and processes that contribute to air pollution. Such 
information can be valuable for regulatory agencies that 
are exploring different air pollution reduction policies or 
interventions (Dominici et al., 2010).
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